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1 Quantum Mechanics

Quantum mechanics is concerned with solving equations of the form

ĤΨ(x, t) = i~
∂

∂t
Ψ(x, t),

where Ĥ is a Hermitian linear operator known as the Hamiltonian and Ψ(x, t) a vector on a Hilbert
space. The previous equation is time-dependent. The corresponding time-independent equation is
of the form

Ĥψ(x) = Eψ(x),

where Ĥ is the same linear operator, E is an eigenvalue of Ĥ with eigenvector ψ(x).

Definition 1. A Hilbert space is a complete metric space and inner product space in which the
inner product, denoted as 〈a, b〉, is complex-valued and obeys the following relations:

(a) 〈a, b〉 = 〈b, a〉†

(b) 〈a+ c, b〉 = 〈a, b〉+ 〈c, b〉

(c) 〈a, a〉 ≥ 0 with equality if and only if a is zero,

where † represents complex conjugation.

In the context of quantum mechanics, Hilbert space vectors describe a system’s probability
amplitude and are called state vectors. Probability amplitude is a complex-valued quantity whose
Hilbert space inner product is the probability of measuring the system in a given state. Eigenvectors
of Hermitian operators are important because physically measuring a quantum system causes it
to be in a state represented by an eigenvector. The quantity measured will be the eigenvalue
corresponding to the eigenvector.

Observable quantities in quantum mechanics correspond to Hermitian linear operators Ô on a
Hilbert space. To determine the expected value of an observable quantity in a system described by
a state vector ψ, one calculates the inner product

〈
ψ, Ôψ

〉
.

Proposition 1. The eigenvalues of a Hermitian operator are always real and the eigenvectors are
always orthogonal.

A proof derived from Arfken’s treatment in Mathematical Methods for Physicists can be found
on the Wolfram MathWorld website[3]. The Hamiltonian is the operator corresponding to energy.
This paper is devoted to determining information about the eigenvalues of a Hamiltonian, known
as energy levels, from its symmetries. To this end, we introduce the symmetry group of a Hamilto-
nian. The symmetry group of a given Hamiltonian is the set of all coordinate transformations and
permutations that leave the Hamiltonian invariant. Let T be a symmetry operation. Then,

TĤT−1 = Ĥ

T Ĥ = ĤT.

This provides our first application of group theory to quantum mechanics.
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Proposition 2. Let E be an energy level of a Hamiltonian Ĥ and let G be a group of symmetries
of Ĥ. Then, elements of G take eigenvectors corresponding to E to eigenvectors corresponding to
E.

Proof. Let T be a symmetry operation in G and let ψ be an eigenvector corresponding to the energy
level E.

TĤψ = TEψ

ĤTψ = ETψ,

implying that Tψ is an eigenvector corresponding to the energy level E.

Note that this does not provide information about the degeneracy of a given energy level. To
obtain that, we must first learn some group representation theory.

2 Representation theory

Loosely speaking, a group representation is a group action on a vector space.

Definition 2. A group representation of a group G on a vector space V is a homomorphism from
G to the group of linear transformations of V . If the homomorphism is injective, the representation
is called faithful.

A more intuitive definition is that a group representation is a set of matrices such that their mul-
tiplication table obeys the group multiplication table. The table below contains two representations
of Z2, the first two over C and the third over C2.

e a
Γ0 1 1
Γ1 1 -1

Γ2

[
1 0
0 1

] [
1 0
0 −1

]
Table 1: Two representations of Z2

Note that the representations Γ0 and Γ1 appear as part of Γ2. This can be formalized as follows.
We first define the direct sum.

Definition 3. Let V be a vector space and suppose each element of V can be written uniquely
as the sum of an element of W and an element of U , where W and U are subsets of V which are
disjoint except for the identity vector. Then, V is the direct sum of U and V . This is written as

V = W
⊕

U

Definition 4. A representation is called reducible when it can be expressed as a direct sum of
subrepresentations. Equivalently, a representation is reducible if the vector space it is over contains
an invariant subspace.

A representation is called irreducible if it is not reducible.
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Consider the subspace of C2 consisting of diagonal matrices. Multiplication by either element
of Γ2 takes a diagonal matrix to a diagonal matrix, meaning that Γ2 is reducible. In particular,

Γ2 = Γ0

⊕
Γ1.

These concepts allow us to prove the following results about representations of the symmetry
group of a Hamiltonian.

Theorem 1. Let Ĥ be a Hamiltonian and G its symmetry group. Then, the eigenvectors corre-
sponding to an energy level form a basis for a vector space on which G has a representation[1].

Proof. It was shown in Proposition 2 that symmetries of the Hamiltonian take eigenvectors to eigen-
vectors corresponding to the same energy level. The vector space generated by all the eigenvectors
corresponding to the same energy level is a natural space to represent G on, with a symmetry trans-
formation which takes an eigenvector ψ1 to an eigenvector ψ2 being represented in the corresponding
way.

Theorem 2. If G is the complete symmetry group of some Hamiltonian Ĥ, then the eigenvectors
corresponding to an energy level transform irreducibly according to G[1].

The proof is elementary and can be found in Heine’s Group Theory and Quantum Mechanics
[1].

We will now apply these tools to a simple quantum system. An ammonia (NH3) molecule
spinning about the axis passing through the nitrogen and perpendicular to the triangular hydrogen
base has an inversion symmetry; the inter-atom distances remain the same regardless of whether
the nitrogen is above or below the rotating base (see Figure 1). The two symmetries must irre-
ducibly transform the possible eigenvectors among themselves, so there must be two eigenvectors.
Therefore, there is one doubly degenerate energy state corresponding to this symmetry.

Figure 1: Two states of the ammonia molecule. Image adapted from Daniel Styer’s The Physics of
Quantum Mechanics[2].

3 Perturbation theory

It is an unfortunate fact that the Hamiltonian of almost any system more complicated than the
hydrogen atom gives rise to an analytically unsolvable partial differential equation. A great deal
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of quantum mechanics is done using various approximation techniques. Perturbation theory is a
technique which is useful in systems which would be solvable if not for some relatively small portion
of the Hamiltonian. It historically arose as a technique for studying the effect of planets on each
others’ solar orbits. Solving that problem analytically would require an analytical solution to the
three-body problem. Instead, one first solves for the orbits of the planets around the sun, then
perturbs those solutions with an interaction term.

The full Hamiltonian is written in the form

Ĥ = Ĥ0 + Ĥ1,

the system
Ĥ0ψ = Eψ

is solved analytically, and approximate energies and state vectors for Ĥ1 are built from the eigen-
vectors and energies for Ĥ0. The building up of new solutions involves evaluating many inner
products, which on an infinite dimensional function space amounts to evaluating integrals. Group
representation theory can simplify this problem by determining how many originally degenerate
energy levels will be split into distinct energy levels and which inner products will evaluate to zero.
We will not state a theorem for the second of those uses, as it requires a deeper knowledge of
representation theory. A proof of the following theorem can be found in Heine’s Group Theory and
Quantum Mechanics[1].

Theorem 3. If G is a symmetry group for Ĥ, Ĥ0, and Ĥ1, and if the eigenvectors corresponding
to some energy level of Ĥ0 transform according to the representation Γ of G, where

Γ = Γ1

⊕
Γ2

⊕
. . .

⊕
Γn

and each Γi is irreducible, then the unperturbed energy level is split into at most n levels.

To make sense of this theorem, recall that eigenvectors corresponding to the same energy level
transform irreducibly by Theorem 2. Each irreducible subrepresentation Γi corresponds to a set of
eigenvectors which it sends to each other and which therefore are in the same energy level. Since
Γi is part of the representation of a symmetry group of the perturbing Hamiltonian, these sets of
eigenvectors must be part of the same energy level of the full Hamiltonian, so there can be no more
energy levels than there are irreducible subrepresentations.

Returning to the example of the ammonia molecule, suppose we apply a uniform electric field
along the axis passing through the nitrogen. The original eigenvectors, corresponding to the nitro-
gen atom being above or below the hydrogen plane, can be parametrized as being at the points
(0, 1) and (0,−1). The only symmetry shared by the original and perturbing Hamiltonians is the
identity. In our parametrization, this symmetry would be represented by I2, the two-dimensional
identity matrix. This contains the two one-dimensional identity subrepresentations, so the formerly
doubly-degenerate energy level is split into two non-degenerate energy levels.

4 Summary

Group representation theory can be used as a framework for computing values in quantum me-
chanics. For applications less trivial than the two-state system we have used as an example, it is
necessary to have a deeper understanding of group representation theory, particularly the intrica-
cies of representing infinite groups, decomposition of direct products of representations into direct
sums of representations, and some theorems on characters of representations.
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