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The circumference of an ellipse is a surprising problem due to the complexity
that it has. Although the question �what is the circumference of an ellipse?� sounds
fairly simple, it introduces mathematicians to what have became known as elliptic
functions and the diverse properties of such functions. I will begin by giving an
outline of how the mathematics behind the circumference an ellipse evolved to the
form the de�nition of elliptic functions. After understanding what an elliptic func-
tion is, I will prove one of the key properties of an elliptic function that shows that
elliptic functions cannot be expressed as a linear combinations of �elementary func-
tions� (a set of functions which will be de�ned later). After realizing the complex
nature of using elliptic functions to describe the circumference of an ellipse, I will
turn towards approximation methods to see how the circumference of an ellipse can
be approximated using elementary functions.

1. The Discovery of Elliptic Functions

A brief glimpse of how the arc length of a circle is found gives the method which
is used to �nd the arc length of an ellipse. A circle centered at the origin with
radius one is described in Cartisian coordinates as x2 + y2 = 1. Thus the equation
for the upper half of the circle is given by y =

√
1− x2. To �nd the arc length of

the curve, we use the formula that the arc length, L, is

L =

bˆ

a

√
1 + (f ′(x))2dx.

Thus by the normal rules of the derivative we get that

y′ = − x√
1− x2

.

Thus for y = f(x), we get that

(f ′(x))2 =
x2

1− x2
,

1 + (f ′(x))2 =
1− x2

1− x2
+

x2

1− x2
=

1

1− x2
.

and then by substitution

L =

1ˆ

−1

1√
1− x2

dx

1
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where a = −1 and b = 1 since x goes from −1 to 1. However, by symmetry we
know that

L = 2

1ˆ

0

1√
1− x2

dx.

Thus since by using the formula for arcsin, we get that

L = 2arcsin(x)|10 = 2(arcsin(1)− arcsin(0)) = 2(
π

2
) = π.

Since the formula for the circumference of the entire circle is two times the
circumference of the upper half, we get that the circumference of a circle of radius
1 is 2π which is what we expected.

Now lets naively do the same for an ellipse. The Cartesian coordinates of an

ellipse are given by x2

a2 + y2

b2 = 1. Thus we �nd that the circumference of the upper
half is given by

y =

√
b2(1− x2

a2
),

y′ =
−bx

a2
√
1− x2

a2

,

y′2 =
b2x2

a2(a2 − x2)
,

√
1 + y′2 =

√
b2x2

a2(a2 − x2)
+ 1.

Let c = b
a and parametrize x by t where t(−a) = 1 and t(a) = 1 and we get that

the arc length of the upper half is

L =

B̂

A

√
1 + (y′)2dx =

aˆ

−a

√
b2x2

a2(a2 − x2)
+ 1dx =

1ˆ

−1

√
1− (c2 − 1)t2

1− t2
dx.

This can be simpli�ed by

1ˆ

−1

√
1− (c2 − 1)t2

1− t2

√
1− (c2 − 1)t2

1− (c2 − 1)t2
dx =

1ˆ

−1

1− (c2 − 1)t2√
(1− t2)(1− (c2 − 1)t2)

dx,

or

L =

1ˆ

−1

1√
(1− t2)(1− (c2 − 1)t2)

dx−
1ˆ

−1

(c2 − 1)t2√
(1− t2)(1− (c2 − 1)t2)

dx

With this we have stumbled onto an integral that is of the form of an elliptical
integral of the second kind and thus we must stop since, as we will see later, this
integral cannot be solved in terms of elementary functions.
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2. Elliptic Integrals and Elliptic Functions

So now we see that in order to understand what the circumference of an ellipse we
have to understand this type of integral, mainly an elliptic integral. By de�nition,
an elliptic integral, such as the one derived above, is de�ned as the integral of
R[t,

√
p(t)] where R is a rational function and p is a polynomial of degree 3 or 4

without repeated roots. In other words, an elliptic integral can be expressed as

xˆ

0

dt√
p(t)

.

This �ts with what we derived above where p(t) = (1− t2)(1− (c2−1)t2), and thus
the �rst integral is an elliptic integral.

Properties of elliptic integrals can be understood by comparison to other func-
tions. For example, the arcsin function is as such

arcsin(t) =

xˆ

0

dt√
1− t2

closely resembles elliptic integrals like the lemniscatitc integral, the integral to de-
scribe the arc length of the lemniscate of Bernoulli, which is

xˆ

0

dt√
1− t4

.

Since we know that

2 arcsin(t) = 2

xˆ

0

dt√
1− t2

=

2x
√
1−x2ˆ

0

dt√
1− t2

,

it helps lead us to the fact that

2

xˆ

0

dt√
1− t4

=

2x
√
1−x4/(1+x4)ˆ

0

dt√
1− t4

.

which is the formula for doubling the length of the lemniscate of Bernoulli. Other
properties such as the addition formulas can be understood by looking at functions
in the same way, such as how there is an analogy between the angle addition formula
for arcsin and the addition of arc lengths for the lemniscate.

However, one of the most important properties of elliptic integrals, one that
applies to all elliptic integrals, has to be approached from a di�erent direction. The
property that I am talking about is that elliptic integrals cannot be solved in terms
of elementary functions. Elementary functions are functions that are written as
any linear combination of rational, circular (trigonometric), exponential, and/or
logarithmic functions and their inverses. So this means that no elliptic integral can
be written as elementary functions, or the functions generally seen in mathematics.
This is the reason that all of the elliptic integrals before were left in terms that
included the integral: there is no way to write it in terms of functions without the
integral (unless you de�ne some new function that is de�ned by that integral).
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The implication of this is far reaching. However, for our purposes, it gives the
most fascinating result of the whole paper: the circumference of an ellipse cannot
be expressed in closed form by elementary functions. Unlike the circumference of a
circle which we know of as 2πr where r is the radius, there is no way to express the
circumference of an ellipse as a formula with known functions and no integrals. This
is a direct result of the fact that elliptic integrals cannot be expressed by elementary
functions since the circumference of an ellipse itself is found by an elliptic integral.

3. The Non-Integrability of Elliptic Integrals

To show that elliptic integrals cannot be written as a linear combination of
elementary integrals, we will take for granted the theorem known as Loiuville's
Theorem.

Theorem 1. Let F be a di�erential �eld of characteristic zero. Take α ∈ F and

y ∈ F [t] where F [t]is some elementary di�erential extension �eld of F having the

same sub�eld of constants. If the equation y′ = α has a solution, then there exists

constants c1, c2, ..., cn ∈ F and elements u1, u2, ..., un ∈ F v ∈ F [t] such that

α =
n∑

i=1

ci
u′i
ui

+ v′.

For the use of this paper, take F is be the �eld of rational functions, take the
di�erential extension �eld of F to be F with an extra element t, or F [t]. Thus for our
purposes, since the derivative of one of these functions is a rational function, and a
rational function times another rational function and divided by a rational function

is still an rational function, we can note that
∑n

i=1 ci
u′
i

ui
is just some element of F .

Thus we can simplify our expression by saying

α = (element of F ) + v′.

Since v ∈ F [t], we can write v as

v =

m∑
j=0

bjt
j ,

where each term bj ∈ F . By di�erentiating, we get that

v′ =

m∑
j=0

b′jt
j + jbjt

′tj−1.

If j,bj 6= 0, then b′j + jbjg
′ 6= 0 since otherwise g′ would every single one of its

poles order one, which is impossible. Thus we have that m = 1. We can then
in most cases ignore the extra element of F added onto v′ since most cases will
get a contradiction regardless if its presence, and if it can be solved without the
additional terms of F then it can be solved by adding just the 0 element of F . Thus
we get our formula that we have to solve, that is

α = a′t+ at′

where a = b1.
Thus for our case we now have a much simpler formula to deal with. In order

to understand the next step, we must now re�ne our de�nition of an elementary
function to be the elements of di�erential extension �elds of the di�erential �eld
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of rational functions that satisfy that equation. Thus, for any given α you wish to
check as an element of the set of elementary functions, break into into two functions,
f(x) and t where f(x) is a rational function and t is an extension of the �eld of
elementary functions, and show whether this formula can be solved.

To show this, take the more concrete example of α = f(x)eg(x) where f(x) and
g(x) are rational functions. Here, f(x) = f(x) and the extension t is de�ned by
t = eg(x). Thus, there must be an a in the �eld of rational functions such that

f(x)eg(x) = a′eg(x) + ag′(x)eg(x),

f(x) = a′ + ag′(x).

Since a is in the �eld of rational functions, a′ is in the �eld of rational functions,
and two rational functions added together make an rational function, we have a
statement that can be true. Thus by Loiuville's Theorem, functions of the form
f(x)eg(x) can be in a di�erential extension �eld of rational functions. This leads
us to the conclusion that functions of the form f(x)eg(x) can be an elementary
function.

Notice however that this de�nition of an elementary function then leads directly
to its integrability. By showing that this equation has a solution we show that there
is a y ∈ F [t] such that y′ = α, or that α be written as the derivative of the function
in the di�erential extension �eld. Thus there is a function in the extension �eld,
namely eg(x) in this case, whose derivative is f(x)eg(x) and thus f(x)eg(x) has an
anti-derivative or is integrable.

However, another case could be α = ex
2

. This is the infamous Gaussian curve

or the bell curve. Here, f(x) = 1 and t = ex
2

, making the equation as follows:

ex
2

= a′ex
2

− 2xaex
2

,

1 = a′ − 2xa.

This equation, however, leads to problems. Since a is a rational function, write
a = p

q where p and q are polynomials sharing no roots. From our rules of the

derivative, we have that

a′ =
p′q − q′p

q2
.

Thus by algebra we get
q2 = p′q − q′p− 2xpq,

q = p′ − q′p

q
− 2xp.

However, this gives us a contradiction. The function q is a polynomial, and

thus q′p
q must be a term in the polynomial. By the de�nition of p and q, these

polynomials share no roots. However, q′ has at least one less root than q by the
de�nition of the derivative on a polynomial (it is one degree less). Thus there at
least one root in q that is not in q′p, but this violates the de�nition of a polynomial.
Thus q is not a polynomial and hence there is a contradiction. Thus by Loiuville's

Theorem we can conclude that α = e−x
2

is not in a di�erential extension �eld of
the rational functions that satis�es our required equation, and thus α is not an
elementary function. Likewise, we have shown that there is no y ∈ F [t] where

t = e−x
2

such that y′ = α, and thus the integral of α cannot be written in terms of
elementary functions.
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Now that we have the background knowledge I can show that an elliptic function
is not integrable. Take α = 1√

m
where m is a polynomial of degree 3 or 4. Without

loss of generality, take m to be a polynomial of degree 4. Thus, using our formula,
we get

1√
m

=
a′√
m
− 3am′

2
√
m
,

1 = a′ − 3am′

2
.

Since a is a rational function, take a = p
q where p and q share no roots. Thus

this can be rewritten as

1 =
p′q − q′p

q2
− 3pm′

2q
,

q2 = p′q − q′p− 3

2
pqm′.

Here we get the same contradiction as in the Gaussian that q must be a poly-

nomial but the term q′p
q cannot be a term in a polynomial (notice that if α = f(x)√

m

there would be no contradiction since then f(x)q would have to have the term q′p
q

which is not contradictory). Thus we have shown that 1√
m

is not in a di�erential

extension �eld of the rational functions that satis�es our required equation, and
thus αis not an elementary function. Furthermore, there is no y ∈ F [t] where
t = 1√

m
such that y′ = 1√

m
, and thus the integral of 1√

m
cannot be written in terms

of elementary functions, which is the property we set out to prove.

4. Approximation Methods

At this point we seem to have hit a road block. We have calculated exactly what
the integral must be to give us the circumference of an ellipse, but now we have just
shown that the integral cannot be solved in terms of functions that are commonly
used. However, we are not left hopeless in our adventure to �nd the circumference
of an ellipse. There exist approximation methods to �nd the circumference of
an ellipse. These can be separated into two categories, those being more on the
theoretical side and relying on numerical approximations of the integral in question,
and those more computationally practical.

The �more theoretical� approximation methods rely on numerical approximations
of the integral that we found, namely

L =

1ˆ

−1

1− (c2 − 1)t2√
(1− t2)(1− (c2 − 1)t2)

dx.

These approximation techniques will give exact answers to as many decimal places
as needed at the cost of high computational requirements. One of these methods is
to use algebra to show that

1− (c2 − 1)t2√
(1− t2)(1− (c2 − 1)t2)

=
b2
√
(b2 + t2) + nt2

(b2 + t2)
3
2
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where n is de�ned by a2 = (n + 1)b2. Then by using the binomial theorem for
non-integer powers it is shown that the function can be split in the following way:

1− (c2 − 1)t2√
(1− t2)(1− (c2 − 1)t2)

=
b2

b2 + t2
+
1

2

b2nt2

(b2 + t2)2
+
1× 1

2× 4

b4n2t4

(b2 + t2)3
+
1× 1× 3

2× 4× 6

n3t6

(b2 + t2)
5
2

+....

This new function can then be split into separate integrals, each of which can be
integrated for an answer in elementary functions. However, this is an in�nite series
so the computation can never be completed. However, an approximation can be
given by using just the �rst n terms of the sequence. Likewise, this computation
still requires integrals and it has many complicated terms to deal with and as such
it is not very practical to use.

On the other hand, practical and easy approximation methods exist. The earliest
of which can be attributed to Kepler. Kepler simply used the geometric mean,
making the equation for the circumference C of an ellipse equal to

C = 2π
√
ab.

This simple approximation was within the error bounds of Kepler when he famously
determined the orbits of celestial bodies to be ellipses. However, this approximation
works well for cases where the ellipse is close to a circle (like in the case of celestial
bodies) but goes towards 100% error quickly as the ellipses become �atter. Even
the simpler approximation method using the arithmetic mean

C = 2π
a+ b

2
= π(a+ b)

which gives less error than the geometric mean. Interestingly, by taking a com-
bination of the geometric and arithmetic means, we can arrive at an even better
approximation, namely

C = 2π(3
a+ b

2
−
√
ab).

Even better is to use

C = 2π(1.32
a+ b

2
− .32

√
ab)

The last useful approximation that can be done by hand is called the Linder ap-
proximation, given by

π(a+ b)[1 +
h

8
]2,

where h is given by the following equation (this same h is used in further equations
as well):

h = (
a− b
a+ b

)2.

This method however is really just an extension of what was shown earlier, as it is
the arithmetic mean combined with a correction to more accurately match the �rst
three terms of the Taylor expansion. This approximation does extremely well for
only using basic algebraic methods that can be done by hand and as such is one of
the most practical approximation equations.

However, there exists an approximation that is hard to beat that only requires a
calculator. This method is known as the Ramanujan Second Approximation, given
by

C = π(a+ b)[1 +
3h

10 +
√
4− 3h

].
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This approximation matches the Taylor expansions for the �rst 9 terms for ellipses
of moderate eccentricity (meaning, not extremely �at).

Although Ramanujan's Second approximation normally given as the example
approximation for a circumference, there is a better and easier approximation for
the circumference of an ellipse. A group of approximations known as the Pade
approximations give a better approximation and do not require taking the square
root. An easy approximation from this group is given by

C = π(a+ b)
64 + 3h2

64− 16h
,

though there are even better of which can be used in computer programs, namely

C = π(a+ b)
135168− 85760h− 5568h2 + 3867h3

135168− 119552h+ 22208h2 − 345h3
.

Thus, the use of these approximation techniques can be described as follows. For
simple �in your head� or on paper calculation, taking the arithmetic mean or the
combination of the arithmetic mean and the geometric mean will do well for most
cases. With slightly more thought put into it the Linder approximation will get
the user a few more decimal places of accuracy. However, if one has a calculator
or is writing a computer program, it is recommended that they use one of the
Pade approximation methods. Although the Ramanujan approximation methods
are famous, they are not as computationally e�cient as the Pade approximations
and do not receive as much accuracy, and as such should not be used in practical
applications.

5. Conclusion

As can be seen by the depth of this paper alone, the circumference of an ellipse
is a complex problem. By naively starting the calculation for the arc length of an
ellipse we stumbled onto an elliptic integral. It was then proved that these integrals
could not be solved in terms of elementary functions. However, since we could not
go out with a defeat, we lastly turned to approximation methods. These ranged
from approximations that can be done in one's head to the integral of an in�nite
series. These approximations given should be good enough for most people who
need to �nd the circumference of an ellipse.


