
Automated Geometric Theorem Proving

By Christopher Rackauckas

December 14, 2012

Abstract

Automated geometric theorem proving is the process of proving geometric theorems using algorithmic means. In this report
we discuss a Groebner Basis method for automated geometric theorem proving and develop an algorithm for determining
whether a geometric theorem follows from given hypotheses. After developing the algorithm, implementation and computing
issues for Mathematica are addressed to give a more optimized algorithm and to prove that Mathematica's Groebner Basis
method can handle the necessary computation for any set of hypotheses polynomials h1, . . . , hs ∈ R[x1, . . . xn, u1, . . . , um].

Contents

1 The Process 1

1.1 Coding A Figure . 1
1.2 Coding the Hypotheses and Theorems . 2
1.3 Geometric Proving . 2

1.3.1 Strict Following . 3
1.3.2 Generic Following . 3

2 Computational Concerns 6

2.1 Computational E�ciency . 6
2.2 Utilizing Coe�cients in R . 8

2

Chapter 1

The Process

Automated geometric theorem proving is the process of proving geometric theorems using algorithmic means. As one could
imagine, such a process has many applications in areas such as arti�cial intelligence. Even if one is interested in pure
mathematics, having an algorithmic method for proving geometric theorems could serve as a simple way to prove many
theorems that are di�cult to prove using the conventional methods. For the purposes of this paper, we will be investigating
how to prove geometric theorems using a process that involves polynomial equations and Groebner Bases. An alternative
method of using polynomial equations is known as Wu's method and falls out the scope of this paper [5].

The idea is that we will code a problem using (x, y) coordinates. Coordinates whose values are arbitrarily chosen will be
coded with some ui value. Values which are determined by the previously declared variables will be coded as some xi. Given
coordinates which describe the �gure, we then must constrain the relations between these coordinates with equations that
must be satis�ed in the geometric construction. Once we have our coordinates constrained, our goal is to test whether our
theorem follows for all of the coordinate combinations that are allowed by the constraints.

To give a more concrete explanation of the process, we will develop the details of the steps by �rst showing how one would
go about performing the steps on a simple problem and then generalize the process. The example that we will be looking
at will be the parallelogram ABCD shown in Figure 1.0.1. What we will prove using our automated methods is that the
diagonals AD and BC bisect each other.

Figure 1.0.1: Parallelogram ABCD

1.1 Coding A Figure

To code the parallelogram ABCD, start by placing the origin of the coordinate grid at the point A. This implies A = (0, 0).
Now rotate the �gure such that B is on the x-axis. Signify that B is some arbitrary distance u1 away from A by declaring
B = (u1, 0). Now denote C as some arbitrary point C = (u2, u3). Since we have identi�ed 3 points on our parallelogram,
there exists only one place that the last corner could occupy. Therefore the point D is completely determined, and thus we

1

de�ne D = (x1, x2) using x's to distinguish the fact that these values are determined. Notice the intersection of the diagonals
is determined once we have picked the corners, and thus we de�ne N = (x3, x4).

To generalize this step, notice that we want to start by placing the origin at one of the points in our �gure as this will
decrease the number of non-zero coordinates and hence decrease the number of variables in the problem. Then we determine
whether the values a given point are arbitrary or determined given the set of points we have already set. Note that, although
it is not seen in our example, it is possible for the x coordinate to be determined while the y coordinate is not.

1.2 Coding the Hypotheses and Theorems

Now we must code the hypotheses that constrain the coordinates in our problem. For example, one hypothesis that we must
consider is that, since ABCD is a parallelogram, AC ‖ BD. We can describe this relation using the coordinates by noting
that this is equivalent to saying AC has the same slope as BD. This leads us to the equation u3

u2
= x2

x1−u1
. By clearing

denominators and moving the variables to one side we obtain the polynomial equation h1 := u3(x1 − u1)− x2u2 = 0. Doing
the same for AB ‖ CD we obtain the equation h2 := x2− u3 = 0. Another relation that we must consider is that N must be
on the diagonal AD which implies that A, N , and D must be collinear. We can describe this relationship by the equivalent
property that the slope of AN must be equal to the slope of AD. After clearing denominators and moving the variables to
one side, we obtain the equation h3 := x4x1 − x3x2 = 0. Since N must be on the diagonal BC, we use the same steps to
obtain the equation h4 := x4(u2 − u1) + u3(x3 − u1) = 0. Notice that these four equations completely de�ne the relations
between the points in our parallelogram.

Now we must code our theorems in the same manner. We wish to prove that N bisects AD which is the same as saying
that the length of AN is equal to the length of ND. Thus, using the Euclidean distance formula we obtain the polynomial
t1 := x2

4 + x2
3 − (x3 − x1)

2 − (x4 − x2)
2 = x2

1 − 2x1x3 − 2x4x2 + x2
2 = 0. Doing the same for the other diagonal we obtain the

equation t2 := 2x3u1 − 2x3u2 − 2x4u3 − u2
1u

2
2 + u2

3 = 0.
Thus we see that to code the hypotheses we must simply �nd a complete set of relations that de�ne the given problem

and translate those relations into their equivalent coordinate equation form. Then we must de�ne our theorems using their
equivalent coordinate form. Table 1 shows a set translations of useful relations into their coordinate forms.

Table 1: Let A = (x1, y1), B = (x2, y2), C = (x3, y3) , D = (x4, y4), E = (x5, y5), and F = (x6, y6).
Property Idea Polynomial Code

AB ‖ CD Slope(AB) = Slope(CD)
y2−y1
x2−x1

=
y4−y3
x4−x3

AB ⊥ CD Slope(AB) = −Slope(CD)−1 y2−y1
x2−x1

=
x3−x4
y4−y3

Colinear(A,B,C) Slope(AB) = Slope(AC)
y2−y1
x2−x1

=
y3−y1
x3−x1

Length(AB) = Length(CD) d(A,B) = d(C,D)
√

(y2 − y1)2 − (x2 − x1)2 =
√

(y4 − y3)2 − (x4 − x3)2

C on a circle center A radius AB d(A,B) = d(A,C)
√

(y2 − y1)2 − (x2 − x1)2 =
√

(y3 − y1)2 − (x3 − x1)2

C is the midpoint of AB d(A,B) = d(A,C)
√

(y2 − y1)2 − (x2 − x1)2 =
√

(y3 − y1)2 − (x3 − x1)2

The dot product of AB and CD
−−→
AB = (x2 − x1, y2 − y1) (x2 − x1)(x4 − x3) + (y2 − y1)(y4 − y3)

∠ABC equals ∠DEF AB · BC = d(A,B)d(B,C) cos(θ)
(x2−x1)(x3−x2)+(y2−y1)(y3−y2)√

(y2−y1)2−(x2−x1)2
√

(y3−y2)2−(x3−x2)2
=

(x5−x4)(x6−x5)+(y5−y4)(y6−y5)√
(y5−y4)2−(x5−x4)2

√
(y6−y5)2−(x6−x5)2

A, B, C, and D lie on a circle arcLength(ABD) = arcLength(ACD) ∠ABD equals ∠ACD

BD bisection ∠ABC ∠ABD equals ∠DBC

1.3 Geometric Proving

Once we have coded our problem, we must develop a method to show whether the theorems follow from the hypotheses. At
this point, we have coded our hypotheses and theorems as equations in R[x1, . . . , xn, u1, . . . , um]. Notice that given a set of
parameter vector a ∈ Rn+m, the hypothesis corresponding to equation hi is true for point in parameter space if and only if
hi(a) = 0. Thus the set of parameter vectors which satisfy hypotheses h1, . . . hs is V (h1, . . . , hs). To show that a theorem
follows from the hypotheses, what we want to show is that in all of the cases where the h1, . . . , hs are true, tj is true. Thus
we want to show that ∀a ∈ V (h1, . . . , hs), tj(a) = 0, or more succinctly, tj ∈ I(V (h1, . . . , hs)).

2

1.3.1 Strict Following

The above reasoning leads directly to the following de�nition:

De�nition. The conclusion t follows strictly from the hypotheses h1, . . . , hs if t ∈ I(V (h1, . . . , hs)).

From this de�nition we arrive at a useful proposition for computing whether a conclusion follows strictly from a given set
of hypotheses:

Proposition. t ∈
√
< h1, . . . , hs > =⇒ t follows strictly from h1, . . . , hs.

We can easily prove this proposition. Assume that t ∈
√
< h1, . . . , hs >. Therefore tr ∈< h1, . . . , hs > for some r ∈ Z.

Thus we can write tr =
∑
iAihi where each Ai ∈ R[x1, . . . , xn, u1, . . . , um]. Now take any a ∈ V (h1, . . . , hs). Notice t

r(a) = 0
by construction. Thus t(a) = 0 and since t was arbitrary we can conclude that t ∈ I(V (h1, . . . , hs)) and thus t follows strictly
from h1, . . . , hs.

There exist common methods to solve the radical ideal membership problem. One way is to notice that

t ∈
√

< h1, . . . , hs > ⇐⇒ 1 ∈< h1, . . . , hs, 1− ty >⊂ R[y, x1, . . . , xn, u1, . . . , um]

which is if and only if{1} is the reduced Groebner Basis for < h1, . . . , hs, 1 − ty >. Thus we arrive at our computational
approach for proving whether a theorem follows strictly from h1, . . . , hs:

Theorem 1. t follows strictly from h1, . . . , hs ⇐⇒ {1} is the reduced Groebner Basis for < h1, . . . , hs, 1 − ty >⊂
R[y, x1, . . . , xn, u1, . . . , um].

Thus we can return to our example to show how one could perform this calculation in practice. We wish to see whether
theorems t1 and t2 follow strictly from h1, h2, h3, and h4. Thus we check to see if {1} is the reduced Groebner Basis for
< h1, h2, h3, h4, 1− t1y >⊂ R[y, x1, x2, x3, x4, u1, u2, u3]. We can do this using the GroebnerBasis command in Mathematica.
By Figure 1.3.1 we see that {1} is not the reduced Groebner Basis for < h1, h2, h3, h4, 1− t1y > and thus we must conclude
from this method that there are cases where AD is not bisected by BC. From our prior knowledge of geometry we know this
cannot be the case, and thus we must investigate the problems of our method.

In[42]:= GroebnerBasisA9x2 - u3, Hx1 - u1L u3 - x2 u2, x4 x1 - x2 x3, x4 Hu2 - u1L - u3 Hx3 - u1L,

1 - y Ix1
2

- 2 x1 x3 - 2 x4 x2 + x2
2M=, 8y, x1, x2, x3, x4, u1, u2, u3<E

Out[42]= 9u1 u3, u1 x4, u3 x3 - u2 x4, -u3 + x2, -u2 u3 + u3 x1,

-u2 x4 + x1 x4, u3 - y u2
2 u3 - y u3

3
+ 2 y u2

2 x4 + 2 y u3
2 x4,

u3 - y u2
2 u3 - y u3

3
+ 2 x4 + 4 y u2 x3 x4 + 4 y u3 x4

2, -1 + y u3
2

+ y x1
2

- 2 y x1 x3 - 2 y u3 x4=

Figure 1.3.1: Test for Strictly Following

1.3.2 Generic Following

Let us look closer at our example to see if we can identify the error. More speci�cally, look at the factorization of the
Groebner Basis for < h1, h2, h3, h4 > shown in Figure 1.3.2. Notice that the equations are factorable. Since for polynomials
f1, . . . , fs, f, g ∈ k[x1, . . . , xn], V (f1, . . . , fs, fg) = V (f1, . . . , fs, f)∪V (f1, . . . , fs, g), we can factor our problem into separate
varieties.

In[19]:= Factor@GroebnerBasis@8x2 - u3, Hx1 - u1L u3 - x2 u2,

x4 x1 - x2 x3, x4 Hu2 - u1L - u3 Hx3 - u1L<, 8x1, x2, x3, x4, u1, u2, u3<DD
Out[19]= 8-u1 u3 Hu3 - 2 x4L, -u1 Hu1 - u2L Hu3 - 2 x4L, -u1 u3 + u3 x3 + u1 x4 - u2 x4,

-u3 + x2, -u3 Hu1 + u2 - x1L, -u1 u3 + u1 x4 - u2 x4 + x1 x4<

Figure 1.3.2: Groebner Basis for < h1, h2, h3, h4 > factorization

3

If we repeatedly split by one polynomial and then take another Groebner Basis to factor again we see that we will
decompose the variety V = V (h1, h2, h3, h4) as V = V ′ ∪ U1 ∪ U2 ∪ U3 where

V ′ = V (x1 − u1 − u2, x2 − u3, x3 −
u1 + u2

2
, x4 −

u3

2
)

U1 = V (x2, x4, u3)

U2 = V (x1, x2, u1 − u2, u3)

U3 = V (x1 − u2, x2 − u3, x3u3 − x4u2, u1)

Notice that each of these varieties represents a di�erent �case�. V ′ is the case we wish to consider. U1, U2, and U3 are
cases that the algorithm found that we did not even consider. For example, U1 and U2 are the cases where u3 = 0 which
implies that C = (u2, 0) or that A,B, and C (and thus also D by the parallel hypothesis) must be collinear. Thus in these
cases, N , the intersection of AD and BC is not uniquely de�ned! So our theorem falls apart in this case. Also, U3 is the
case where u1 = 0 which implies A = B. Thus in this case we actually have a triangle and so the intersection of AD and BC
is A = B = (0, 0) which is at the endpoint of both lines and thus neither line is bisected.

Notice that these cases have the property that some ui is determined. Here we simply have equations determining either
u1 or u3 to be 0. We can generalize this with the following proposition:

Proposition. Take f ∈ R[u1, . . . um] such that the highest power of um in f is N > 0. Consider f = g where g ∈
R(u1, . . . , um−1)[um]. There exist at most N values of um such that g = 0.

This is a corollary to the Fundamental Theorem of Algebra which states that g has N roots in C. Thus g has at most N
roots in R. But this result states that for any function in just the u1, . . . , um, if you think of all but one of the variables as
already chosen, there are a �nite number of values that the last variable can be. Thus you can always think of such functions
as determining the value of one of the ui variables. But remember, the ui variables are supposed to be arbitrary and thus not
determined. Additionally, the problem we were having in the example was that the algorithm had found ways to determine
some of the ui variables to distort the problem into a case we were not expecting! Thus to avoid this problem, we would
like to de�ne a new way of saying a theorem follows from a given set of hypotheses. Our new de�nition must have include a
condition that ensures none of the ui variables are determined. This leads us to the following de�nition:

De�nition. Let V be an irreducible variety in a�ne space Rm+n with coordinates u1, . . . , um, x1, . . . , xn. The variables
u1, . . . , um are algebraically independent on V if no nonzero polynomial in the ui alone vanishes identically on V .

Thus a variety is not algebraically independent on V if one of the de�ning equations for the variety is some polynomial
in the ui alone. Any variety where the ui are not algebraically independent on V is a variety that has an equation that
determines one of the ui. Thus we wish to eliminate all cases where the ui are not algebraically independent on V when
considering our geometric theorem. Therefore we de�ne our new de�nition of following:

De�nition. The conclusion t follows generically from the hypotheses h1, . . . , hs if g ∈ I(V ′) ⊂ R[u1, . . . , um, x1, . . . , xn]
where V ′ is the union of the components of V = V (h1, . . . , hs) on which u1, . . . , um are algebraically independent.

Notice that this de�nition is the same as the de�nition for follows strictly except we eliminate all of the cases where the
ui are not algebraically independent. The following proposition is necessary for developing the associated algorithm:

Proposition. ∃ c(u1, . . . , um) ∈ R[u1, . . . um] s.t. ct ∈
√
< h1, . . . , hs >, h, . . . , hs ∈ R[u1, . . . , um, x1, . . . , xn] =⇒ t follows

generically from h1, . . . hs

Assume there exists a c following the requirements above. Thus ct vanishes on V = V (h1, . . . , hs) using the same proof
as the earlier proposition for strict following. Thus if we look at any V ′ irreducible component algebraically independent
component of V , V ′ ⊂ V and thus I(V (h1, . . . , hs)) ⊂ I(V ′). Thus ct ∈ I(V ′). But since V ′ was an irreducible variety,
I(V ′) is a prime ideal and thus c ∈ I(V ′) or t ∈ I(V ′). But since V ′ is algebraically independent on the ui and c is a function
of u1, . . . , um, c does not vanish identically on V ′ and thus c /∈ I(V ′). Thus t ∈ I(V ′) and thus t follows generically from
h1, . . . hs. From this we get the following corollary:

4

Corollary. t ∈
√
< h1, . . . , hs > where h1, . . . , hs ∈ R(u1, . . . , um)[x1, . . . , xn] =⇒ t follows generically from h1, . . . hs.

Notice this follows due to the fact that we can now think of the c(u1, . . . , um) as some coe�cient for t. Thus we see that
we can solve the follows generically problem using the radical ideal membership algorithm.

Theorem 2. t follows generically from h1, . . . hm ⇐⇒ {1} is the reduced Groebner Basis of < h1, . . . , hs, 1 − ty >⊂
R(u1, . . . , um)[y, x1, . . . , xn].

Notice that this theorem simply implies that what we needed to do instead was treat the u1, . . . , um variables as constants
and solve for the Groebner Basis in just the x1, . . . , xn and y.

Figure 1.3.3 shows the results of this method usingMathematica on our parallelogram example. Notice that the �rst result
shows that t1, the theorem that d(A,N) = d(N,D) does not follow strictly, but by declaring the ui variables as constants
(by not declaring them as variables in the GroebnerBasis command) and by telling Mathematica that the coe�cient domain
includes rational functions in the ui variables we see that the reduced Groebner Basis is {1} and thus t1 follows generically
from h1, h2, h3, and h4. We can do the same to see that t2 follows generically from the h1, h2, h3, and h4. Thus our full
theorem, the diagonals of a parallelogram bisect each other, follows generically from the hypotheses. We will accept t to be
true if t follows generically from h1, . . . , hs. Thus we have proven that the diagonals of a parallelogram bisect each other.

In[45]:= GroebnerBasisA9x2 - u3, Hx1 - u1L u3 - x2 u2, x4 x1 - x2 x3,

x4 Hu2 - u1L - u3 Hx3 - u1L, 1 - y Ix1
2

- 2 x1 x3 - 2 x4 x2 + x2
2M=,

8y, x1, x2, x3, x4, u1, u2, u3<, CoefficientDomain ® RationalFunctionsE

Out[45]= 9u1 u3, u1 x4, u3 x3 - u2 x4, -u3 + x2, -u2 u3 + u3 x1,

-u2 x4 + x1 x4, u3 - y u2
2 u3 - y u3

3
+ 2 y u2

2 x4 + 2 y u3
2 x4,

u3 - y u2
2 u3 - y u3

3
+ 2 x4 + 4 y u2 x3 x4 + 4 y u3 x4

2, -1 + y u3
2

+ y x1
2

- 2 y x1 x3 - 2 y u3 x4=

In[44]:= GroebnerBasisA9-u3 + x2, u3 H-u1 + x1L - u2 x2, -x2 x3 + x1 x4,

-u3 H-u1 + x3L + H-u1 + u2L x4, 1 - y Ix1
2

+ x2
2

- 2 x1 x3 - 2 x2 x4M=,

8y, x1, x2, x3, x4<, CoefficientDomain ® RationalFunctionsE

Out[44]= 81<

Figure 1.3.3: Test for Generic Following

5

Chapter 2

Computational Concerns

2.1 Computational E�ciency

Now that we have a general algorithm for automated geometric theorem proving, let's address some computational concerns
that one may come across when using this technique. To illustrate these concerns, let's use our technique to solve a problem
that is slightly more computationally taxing. Take 4ABC . Recall that the altitude from A is the line from A that is
perpendicular to BC. Let's try to prove that the three altitudes of the triangle meet at a single point called the orthocenter
of the triangle. Figure 2.1.1 gives a drawing of how we will code the problem. Notice that in the drawing we have three
distinct intersections of altitudes. This is done to illustrate how we will code the proof but you should note that, given what
we wish to prove, if the lines were truly perpendicular in the picture then these points would not be distinct.

A

B

C

D
E

F
(0,0)

(u3,u4)

(x1,x2)
(x3,x4)

(u1,u2)(x5,x6)

P(x7,x8)
Q(x9,x10)

R(x11,x12)

Figure 2.1.1: 4ABC

To set up this problem we require the following hypotheses: three hypotheses saying that the point of intersection between
the altitude and the points de�ning the side of the triangle must be collinear, three hypotheses saying that the altitudes are
perpendicular to the sides, and for each intersection point P , Q, and R we will have two collinear constraints to say that

6

the intersection point is on both lines. The full set of hypotheses is found in Table 2. Our theorem is that P = Q = R. For
example, one of the theorem equations is t := x7 − x9 saying that the x-coordinates of P and Q are the same.

Table 2: Hypotheses for the orthocenter problem.
Hypothesis Equation

Colinear(A,D,B) h1 := x2u3 − u4x1

Colinear(B,E,C) h2 := (u4 − u2)(x3 − u1)− (u3 − u1)(x4 − u2)
Colinear(A,F,C) h3 := x6u1 − u2x5

Colinear(C,P,D) h4 := (x8 − u2)(x1 − u1)− (x2 − u2)(x7 − u1)
Colinear(C,Q,D) h5 := (x10 − u2)(x1 − u1)− (x2 − u2)(x9 − u1)
Colinear(B,P, F) h6 := (x8 − x6)(u3 − x5)− (u4 − x6)(x7 − x5)
Colinear(B,R, F) h7 := (x12 − x6)(u3 − x5)− (u4 − x6)(x11 − x5)
Colinear(AQE) h8 := x10x3 − x4x9

Colinear(ARE) h9 := x12x3 − x4x11

DC ⊥ AB h10 := u4(x2 − u2) + u3(x1 − u1)

AE ⊥ BC h11 := x4(u4 − u2) + x3(u3 − u1)

BF ⊥ AC h12 := u2(u4 − x6) + u1(u3 − x5)

If we were to naively see if t strictly follows from the hi, we may try using the Mathematica command from Figure 2.1.2.

GroebnerBasis@8x2 u3 - u4 x1, Hu4 - u2L Hx3 - u1L - Hu3 - u1L Hx4 - u2L, x6 u1 - u2 x5,

Hx8 - u2L Hx1 - u1L - Hx2 - u2L Hx7 - u1L, Hx10 - u2L Hx1 - u1L - Hx2 - u2L Hx9 - u1L,

Hx8 - x6L Hu3 - x5L - Hu4 - x6L Hx7 - x5L, Hx12 - x6L Hu3 - x5L - Hu4 - x6L Hx11 - x5L,

x10 x3 - x4 x9, x12 x3 - x4 x11, u4 Hx2 - u2L + u3 Hx1 - u1L,

x4 Hu4 - u2L + x3 Hu3 - u1L, u2 Hu4 - x6L + u1 Hu3 - x5L, 1 - y Hx7 - x9L<,

8y, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, u1, u2, u3, u4<D

Figure 2.1.2: Original Groebner Basis Command

GroebnerBasis@8x2 u3 - u4 x1, Hu4 - u2L Hx3 - u1L - Hu3 - u1L Hx4 - u2L, x6 u1 - u2 x5,

Hx8 - u2L Hx1 - u1L - Hx2 - u2L Hx7 - u1L, Hx10 - u2L Hx1 - u1L - Hx2 - u2L Hx9 - u1L,

Hx8 - x6L Hu3 - x5L - Hu4 - x6L Hx7 - x5L, Hx12 - x6L Hu3 - x5L - Hu4 - x6L Hx11 - x5L,

x10 x3 - x4 x9, x12 x3 - x4 x11, u4 Hx2 - u2L + u3 Hx1 - u1L,

x4 Hu4 - u2L + x3 Hu3 - u1L, u2 Hu4 - x6L + u1 Hu3 - x5L, 1 - y Hx7 - x9L<,

8y, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, u1, u2, u3, u4<,

MonomialOrder ® DegreeReverseLexicographicD

Figure 2.1.3: Groebner Basis Command with Grevlex

However, after much waiting we will see that our computer will practically never give an answer to the problem. What
went wrong? The large number of variables in this problem makes solving a Groebner Basis computationally hard. If one
runs into this problem, one could try changing the monomial order to grevlex. Grevlex results in smaller Groebner bases and
thus results in faster computations [2]. Therefore, if one instead tries the command from Figure 2.1.3, one will see that the
same problem will be able to be solved (on a quad-core computer this takes ≈ 12 seconds).

Note that the reduced Groebner Basis for < h1, . . . , hs, 1 − ty >⊂ R(u1, . . . , um)[y, x1, . . . , xn] has fewer variables than
the reduced Groebner Basis for < h1, . . . , hs, 1− ty >⊂ R[y, x1, . . . , xn, u1, . . . , um]. Thus the algorithm for seeing if t follows
strictly from h1, . . . , hs is algorithmically harder than the algorithm for seeing if t follows generically from h1, . . . , hs. However,
the same principle applies for when one wants to see if t follows generically from h1, . . . , hs: one may need to try setting the
monomial order to grevlex for hard computations.

7

2.2 Utilizing Coe�cients in R
Setting the coe�cient domain in Mathematica to RationalFunctions technically sets the �eld to all rational numbers and
rational functions of all variables not in the variable list of the Groebner Basis command. Thus the command used to solve
the example problem in Mathematica technically solves to see if {1} is the reduced Groebner Basis of < h1, . . . , hs, 1− ty >⊂
Q(u1, . . . , um)[y, x1, . . . , xn] and thus solves the problem when h1, . . . , hs ∈ Q[x1, . . . xn, u1, . . . , um]. What we want to show
is that this same command could be used to solve the problem for h1, . . . , hs ∈ R[x1, . . . xn, u1, . . . , um]. First we will de�ne
the space we wish to prove our theorems in:

De�nition. Take the ideal I 6= {0} and let I =< f1, . . . , fs >⊂ R[x1, . . . , xn]. Denote the coe�cients of each fi by
ci1 , . . . , ciri for the ri nonzero terms in fi i = 1, . . . , s. We de�ne the Rational Coe�cient Space of f1, . . . , fs to be
Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs)[x1, . . . , xn], the set of polynomials in the x1, . . . , xn with coe�cients in
Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs). We will abbreviate this space as K(f1, . . . , fs).

Notice that it is clear by the de�nition that for every generating polynomial fi, fi ∈ K(f1, . . . , fs). We make use of this
de�nition to then prove our lemmas and our theorem.

Lemma. Colley's Lemma. Take the ideal I 6= {0} and let I =< f1, . . . , fs >⊂ R[x1, . . . , xn] where the coe�cients of fi
are de�ned to be ci1 , . . . , ciriwhere for the ri nonzero terms in fi i = 1, . . . , s. Take f, g ∈ I as nonzero polynomials and let

S(f, g) be the S-polynomial

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g

where xγ = LCM(LM(f), LM(g)). Then S(f, g) ∈ K(f1, . . . , fs).

Take f, g ∈ I. Look at the terms from xγ

LT (f) · f . Let LC(f) = c. Notice c ∈ Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs) and thus

we see that every term will be some coe�cient from f divided by c. Thus the coe�cient for every term of xγ

LT (f)f is in

Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs). The same analysis on xγ

LT (g)g gives the every term of the S polynomial has a coe�cient in

Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs). Since the multidegree(LCM(LM(f), LM(g)) ≥ multidegree(LM(f)) and the same for g,
we see that S(f, g) ∈ K(f1, . . . , fs) which completes our proof.

Lemma. Navarrete's Lemma. Take I =< f1, . . . , fs >⊂ R[x1, . . . , xn]. Fix a monomial order > on Zn≥0 and let

G = (g1, . . . , gs) be an ordered s-tuple of polynomials in K(f1, . . . , fs). Take g ∈ K(f1, . . . , fs). The remainder of g on

division by G, r, is such that r ∈ K(f1, . . . , fs).

We will prove this by induction on the iteration i in the division algorithm. We want to show that at every iteration,
the current polynomial, p, and the current remainder, r, are always in K(f1, . . . , fs). When i = 0, r = 0 and p = g
by the de�nition of the multivariable division algorithm and thus g, r ∈ K(f1, . . . , fs). Now assume that at iteration l,
g, r ∈ K(f1, . . . , fs). In the next iteration, either a division occurs or a division does not occur. If a division occurs, r
remains unchanged and thus r for the next iteration is in K(f1, . . . , fs). We note that p for the next iteration, p′, is found

by p′ = p − LT (p)
LT (fi)

· fi for some i ∈ {1, . . . , s}. By the de�nition of the algorithm we know LT (p)|LT (fi). Thus LT (p)
LT (fi)

is

a monomial with multidegree ≥0. The coe�cient of LT (p)
LT (fi)

is in Q(c11 , . . . , c1r1 , . . . , cs1 , . . . , csrs) and thus every term of
LT (p)
LT (fi)

· fi is in K(f1, . . . , fs). Thus p
′ ∈ K(f1, . . . , fs). If a division does not occur, then r for the next iteration, r′ is found

by r′ = r + LT (p). Since p ∈ K(f1, . . . , fs), LT (p) ∈ K(f1, . . . , fs) and thus r′ ∈ K(f1, . . . , fs). Noting that in this case
p′ = p − LT (p) we see that p′ ∈ K(f1, . . . , fs). Thus at iteration l + 1 the current polynomial and the current remainder
are in K(f1, . . . , fs). Thus at every iteration these two polynomials are in K(f1, . . . , fs) and thus they must be when the
algorithm terminates. Thus the remainder of the division of g by F , the �nal r, is such that r ∈ K(f1, . . . , fs)

This leads us to our theorem.

Theorem. The Replacement Theorem. Take the ideal I 6= {0} and let I =< f1, . . . , fs >⊂ R[x1, . . . , xn]. Let G =
{g1, . . . , gl} be the reduced Groebner Basis for I. G ⊂ K(f1, . . . , fs).

Take I. First I want to show there is a Groebner Basis G′ for I s.t. G′ ⊂ K(f1, . . . fs). Let's use Buchberger's Algorithm to
generate the Groebner Basis G′. I want to prove by induction that at each iteration i in Buchberger's Algorithm, the current
basis F is a subset of K(f1, . . . , fs). At the �rst iteration, F = {f1, . . . , fs} and by construction each fi ∈ K(f1, . . . fs) and

8

thus F ⊂ K(f1, . . . , fs). Now assume that at the start of iteration k the current basis F is a subset of K(f1, . . . , fs). Denote
the basis for the iteration directly after iteration k as F ′. Notice that every g ∈ F ′ is either one of the original generating

polynomials fi or S(f, g)
G′

where f, g ∈ I. By construction each fi ∈ K(f1, . . . fs) for every generating polynomial fi.

By Colley's lemma we know that S(f, g) ∈ K(f1, . . . , fs) for any f, g ∈ I. By Navarrete's Lemma we know S(f, g)
G′

∈
K(f1, . . . , fs). Thus every g ∈ F ′ is such that g ∈ K(f1, . . . , fs). Thus F

′ ⊂ K(f1, . . . , fs). Therefore by induction we know
that at the end of the last iteration we will receive a basis F ′ ⊂ K(f1, . . . , fs). Due to the properties of the Buchberger's
Algorithm, we know that F ′ is a Groebner Basis for I. Thus we have found a Groebner Basis for I that is a subset of
K(f1, . . . fs). Let's call this Groebner Basis G

′.
Next, minimize the Groebner Basis G′ to G′′ using the fact that if LT (g) ∈< LT (G − {g}) >, then G − {g} is also

a Groebner Basis for I. To do so, simply eliminate polynomials from the basis that satisfy this condition. Note that we
must also divide each polynomial by its leading coe�cient. Thus notice we have generated a minimal Groebner Basis G′′ s.t
G′′ ⊂ K(f1, . . . , fs).

Now we can solve for the reduced Groebner Basis. Repeatedly replace g ∈ G′′ with g′ = gG−{g} to construct the reduced
Groebner Basis. Notice by Navarrete's Lemma that each g′ ∈ K(f1, . . . , fs) and thus we have constructed a reduced Groebner
Basis which consists of only g and g′ type polynomials, each of which are in K(f1, . . . , fs). Thus we have found a reduced
Groebner Basis for I which is a subset of K(f1, . . . , fs). Since reduced Groebner Bases are unique, the reduced Groebner
Basis G for I is a subset of K(f1, . . . , fs). Thus our theorem is proven.

From this we easily see how to use the RationalFunction parameter to solve any Groebner Basis problem in R with the
following corollary

Corollary. Take the ideal I 6= {0}. Let I =< f1, . . . , fs >⊂ R[x1, . . . , xn] and I ′ =< f1, . . . , fs >⊂ K(f1, . . . fS). The

reduced Groebner Basis of I is equal to the reduced Groebner Basis of I ′.

To see this, simply look at the proof of the Replacement Theorem and realize that every step of our construction can
be mimicked to make the reduced Groebner Basis of I ′ leading to the same reduced Groebner Basis as I. Thus we see that
{1} is the reduced Groebner Basis for the functions in R[x1, . . . , xn] if and only if {1} is the reduced Groebner Basis for
the functions in K(f1, . . . fS). Thus we have an algorithm for solving the problem with any real coe�cients using a rational
function space. Simply de�ne all of the coe�cients of the generating functions to be some constant. Let Mathematica work in
the �eld of rational numbers and these constants. The reduced Groebner Basis that we get from Mathematica will be reduced
Groebner Basis will be in K(f1, . . . , fs) which will be identical to the reduced Groebner Basis when looking at the problem
in R[x1, . . . , xn]. Thus the Mathematica-based method shown earlier for automated geometric theorem proving can be made
to work for any set of polynomials that are a subset of R[x1, . . . , xn] (notice that the same proof will work for C[x1, . . . , xn]).

9

Bibliography

[1] Cox, David A., John B. Little, and Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational

Algebraic Geometry and Commutative Algebra. 3rd ed. New York: Springer, 2007. Print.

[2] Lichtblau, Daniel. "Gröbner Bases in Mathematica 3.0." The Mathematica Journal

(1996): 81-88. Wolfram Library Archive. Wolfram Research Inc. Web. 12 Dec. 2012.
<http://140.177.205.65/infocenter/Articles/2179/TMJ_GroebnerBasis.pdf>.

[3] Miller, Conrad T. "Automated Theorem Proving in Plane Geometry." University of North Texas, 15 Nov. 2006. Web. 12
Dec. 2012. <http://people.unt.edu/ctm0055/Paper2.pdf>.

[4] Buchberger, Bruno, and Franz Winkler. "Groebner Bases Applied to Geometric Theorem Proving." Groebner Bases and

Applications. By D. Wang. Cambridge: Cambridge UP, 2001. 281-92. Print.

[5] "GroebnerBasis." Wolfram Mathematica 9 Documentation. Wolfram Research Inc., n.d. Web. 11 Dec. 2012.
<http://reference.wolfram.com/mathematica/ref/GroebnerBasis.html>.

10

