
A FINITE REPRESENTATION OF AN INFINITELY SMALL

WORLD

CHRIS RACKAUCKAS

Abstract. A common symbol of �it's a small world� is the cutout of
people holding hands. These �gures were transformed into functions
de�ned on the interval [0, 8] and thus a generalized interval fourier de-
composition. The constants were then solved using a �nite sum approxi-
mation. These values were then used to generate a function that repeats
inde�nitely that draws an approximation to this �gure with a periodic-
ity of 8. Since this method solved for a �nite sum approximation, it is a
�nitely approximated solution of an in�nite version of the �it's a small
world� cutout, hence a �nite representation of an in�nitely small world.

1. Introduction to the Problem

The picture above is a very common image. It shows unity among people,
�small the world is�, and represents how we should all come together as one.
Although we think of the cutout like this, it is lacking in one signi�cant
property: it is �nite and the number of people is much less than the popu-
lation. Thus I set out to construct an in�nite version of this image. Being
that in�nite actual representations must either take an in�nite amount of
whatever is used to construct it, or if the in�nite representation does take a
�nite amount of paper then the size of the persons would be some geomet-
ric series where the people are getting smaller. Since I want to show that
all people are the same and actually be able to make this construction, an
actual physical representation was not possible. Thus I decided to create a
representation in function space.

2. The Image as a Function

To solve this problem in function space, I �rst had to describe what the
function was. A few abstractions were used to ensure that the function

1

2 CHRIS RACKAUCKAS

could be described in the function space of R2. All of the people were to be
described using what in the image above was the �male body�. Most cutouts
do not distinguish between male and female and so this does not seem to
stray from the original (also, it is so passe to believe that all women must
be wearing a dress!). Also, the heads were changed to be a rectangle. This
is because it would have been impossible for the function to get to the side
of the head while staying on the body which would have been necessary to
split the circle into two function. However, this will not end up as a problem
since the fourier decomposed version will round out the edges and thus give
a pretty circular looking head. Lastly, although many cutouts use a version
with the hands going down, I chose to have the hands going up like in the
image above. All of the same steps would apply to either image.

To transform this image into a function, I had to make sure it passed the
vertical line test. Since no one function would pass the vertical line test
(using non-parametric functions), I split the image into 4 functions. One
describes the inside of the legs, the other the outside of the legs (and gives
a waist line), another describes the bottom of the arms (and gives the same
waist line), and the last gives the top of the arms and the head. These
functions were labeled f1 through f4 respectively. By drawing this image on
a graph of width 8 and height 8, I solved for these functions to be:

f1(x) =


0 if 0 ≤ x ≤ 2 or 6 ≤ x ≤ 8

2x− 4 if 2 ≤ x ≤ 4

−2x+ 12 if 4 ≤ x ≤ 6

f2(x) =


0 if 0 ≤ x ≤ 1 or 7 ≤ x ≤ 8

4x− 4 if 1 ≤ x ≤ 2

4 if 2 ≤ x ≤ 6

−4x+ 28 if 6 ≤ x ≤ 7

f3(x) =


−3

2x+ 7 if 0 ≤ x ≤ 2

4 if 2 ≤ x ≤ 6
3
2x− 5 if 6 ≤ x ≤ 8

f4(x) =



7 if 0 ≤ x ≤ 1 or 7 ≤ x ≤ 8

−x+ 8 if 1 ≤ x ≤ 2

6 if 2 ≤ x ≤ 3 or 5 ≤ x ≤ 6

8 if 3 ≤ x ≤ 5

x if 6 ≤ x ≤ 7

The image below shows functions f1 through f4 respectively then plots
them together using Mathematica.

A FINITE REPRESENTATION OF AN INFINITELY SMALL WORLD 3

Figure 2.1. The plots of f1 through f4

Figure 2.2. A plot of f1 through f4 together

3. Fourier Decomposition

The next step was to decompose these functions to in�nite periodic func-
tions using what is known as a Fourier decomposition. The Fourier Decoposi-
tion method is de�ned as writing the function gi(x) as an in�nite summation
sine and cosine functions. The method is described as writing

gi(x) =
A0

2
+

∞∑
n=1

(Ani cos(nx) +Bni sin(nx))

4 CHRIS RACKAUCKAS

where

Ani =
1

π

ˆ π

−π
fi(x) cos(nx)dx

and

Bni =
1

π

ˆ π

−π
fi(x) sin(nx)dx.

However, this Fourier decomposition requires the function to be de�ned on
the interval [−π, π]. Thus I instead had to use a di�erent version of the
Fourier Decomposition called the Generalized Interval Fourier Decomposition[2]
which de�nes the summed function as a summation of functions de�ned on
the interval [0, L] as

gi(x) =
A0

2
+

∞∑
n=1

(Ani cos(
2πnx

L
) +Bni sin(

2πnx

L
))

where

Ani =
2

L

ˆ L

0
fi(x) cos(

2πnx

L
)dx

and

Bni =
2

L

ˆ L

0
fi(x) sin(

2πnx

L
)dx

Notice that this simply resizes the periodicity of the functions to match
the length of the interval and thus is an intuitive extension of the standard
Fourier Decomposition.

4. Infinite Sum Representation

In order for these to be calculated, I needed these integrals to be put into a
summation form. First take note that the integral of a piecewise function is
simply the sum of the integrals on the di�erent intervals. Since each interval
of every fi function can be written as some linear function ax+ b, it su�ces
to solve for what these integrals would be.

Noting that the sine function can be representated as a summation by

sin(x) =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!

by using a U-substituion and solving we see that

2

L

ˆ s

r
b cos(

2πnx

L
)dx =

2b

L

∞∑
k=0

(−1)k(s2k+1 − r2k+1)(2πnL)2k

(2k + 1)!

and by using integration by parts we see that

2

L

ˆ s

r
ax cos(

2πnx

L
)dx =

2a

L

∞∑
k=0

(−1)k(s2k+2 − r2k+2)(2πnL)2k

(2k+2)!(2k+1)!
(2k+2)!−(2k+1)!

The derivations are included in the notes. It is interesting to see that the
ax integral can be put into one summation. This is due to the fact that

A FINITE REPRESENTATION OF AN INFINITELY SMALL WORLD 5

the integration requires the one portion be integrated once and the other
integrated twice. However, while the one that is integrated twice is a cosine
while the other is a sine, the u-substitution occurs on the integrated twice
version twice while the u-substition occurs on the integrated once version
just once. Thus while the summation of the cosine contains only the 2k
values and the sine contains the 2k+1 values, after the u-substitions cancel
out the n terms a bit, it turns out that both parts are de�ned as summations
with the values of n only being even (since the cosine term loses n twice,
one for each u-substition, and the sine term loses n once for its single u-

substitution). Thus the value (2k+2)!(2k+1)!
(2k+2)!−(2k+1)! is simply �nding the common

denominator to add together these two terms to make a single function.
Notice by putting this together we get the equation necessary for compu-

tation:

2

L

ˆ s

r
(ax+ b) cos(

2πnx

L
)dx =

2

L
[a

∞∑
k=0

(−1)k(s2k+2 − r2k+2)(2πnL)2k

(2k+2)!(2k+1)!
(2k+2)!−(2k+1)!

+ b
∞∑
k=0

(−1)k(s2k+1 − r2k+1)(2πnL)2k

(2k + 1)!
]

Notice that for the functions we are interested in, functions de�ned on
[0, 8], L = 8. Thus these sums are su�cient for the computation.

5. A Note on the Accuracy

When I �rst solved the equations, I solved the equations using just the
�rst 3 terms in the summation for both a and b. At n = 1this solves the
integral of (2x−4) cos(x) from 2 to 4 (using L = 1

2π) as approximately 15.39.
However, using WolframAlpha I saw that the actual value is approximately
-1.178585. Why such the large discrepency?

Upon investigation, I noticed that there were some signs that this error
gives that would end up being useful for computation. First of all, notice
that both of the summations are alternating series. Also notice that since
the factorial function grows quicker than the expoential function, this gives
us the fact that each term of the series is smaller than the next. Thus what
we see with the errors is that the estimation of the Ani starts as a large
value and then decreases k increases. Since in general for a Fourier series the
n+1th term is smaller than the nth term, we can easily see if we did not solve
the sum of the k values enough if we see this did not decrease. A simple of
data not ran on enough k's is included. What is shown is the sum for solving
(2x− 4) cos(2πnxL) where n = 3 and L = 8. Notice how the total value of the
sum starts high and decreases with each k. If k was large enough, this would
have approached its actual value, approximately 0.18012654869748941859,
but since the sum was not run long enough, its value is higher than the

6 CHRIS RACKAUCKAS

summed value for the n = 2 term which was 0.81056946913870223475, which
indicates that the max k used for the summation must be increased.

6. Computation

Since the accuracy required was far too many terms to be computed by
hand, the summations were solved using a program in Python. The method
was to solve out the terms using a given maximum k and check to see if the
terms were decreasing and if not increase the maximum k value by hand. I
did not resort to having the computation increment the k values since each
run of the program already takes approximately an hour, and thus letting the
computer �nd a good k could have made the program run on a standard PC
for more than a day. Also, normal �oats and integers were not able to be used
for computation. This is because the integers from factorials of large numbers
quickly created integers larger than what could be represented by 32 bits and
the decimal precision required for much of the division was much more than
a 32 bit �oat could o�er. Thus the computation had to be done using Long
and Decimal formats. Python automatically converts int types to long types
which have in�nite accuracy (which was why I chose Python, I knew this from
Crypotography exercises). However, some conversions had to occur to have
the Decimal class used instead of �oats since operations between decimals
and �oats were unde�ned (though operations between longs and Decimals are
de�ned). In particular, a decimal accuracy must be set for the computation.
I noticed a decimal accuracy of 200 sigini�cant �gures. Thus by using the
decimal class for the computation, I was guarenteed a computation that was
correct to 200 sigini�cant �gures (which, gives at least 50 signi�cant �gures
in the decimal place even for the largest of numbers seen in the computation).

A sample of how the computation was done for a simple function is in-
cluded. That program was then extended to be able to compute the integrals
of an arbitrary number of functions de�ned piecewise by linear functions. By
trial and error using the facts mentioned in the Note on Accuracy, I found
that a good maximum k value for the computation was 2000. Thus the �nal
computation consisted of using in�nite accuracy integers called longs, 200
signi�cant �gure decimals, used the �rst 2000 terms of the summation, and
solved for the �rst 10 Ani terms for each function f1 through f4 (notice that
the �rst 10 terms means solving for A0i through A9i). This computation
took approximately an hour for a single run (making debugging be a pretty
lengthly process!).

7. Final Results

The program was run and the �nal results were obtained. The results
are included. Notice that any value |Ani | ≤ 10−10 is set equal to 0 to
account for errors in the computation. The transformed functions can thus

A FINITE REPRESENTATION OF AN INFINITELY SMALL WORLD 7

be approximated as:

g1(x) = 1 +−1.62113893827740437022 cos(πx
4
)

+ 0.81056946913870223475 cos(2
πx

4
)

− 0.18012654869748941859 cos(3
πx

4
)

− 0.06484555753109615893 cos(5
πx

4
)

+ 0.09006327434874469275 cos(6
πx

4
)

− 0.03308446812811030948 cos(7
πx

4
)

− 0.02001406096638769847 cos(9
πx

4
)

g2(x) = 2.5− 2.292636673003025218162 cos(
πx

4
)

− 0.810569469138702085847 cos(2
πx

4
)

+ 0.254737408111447384170 cos(3
πx

4
)

+ 0.405284734569351117373 cos(4
πx

4
)

+ 0.091705466920120927387 cos(5
πx

4
)

− 0.090063274348744742383 cos(6
πx

4
)

− 0.046788503530673986010 cos(7
πx

4
)

− 0.028304156456827470640 cos(9
πx

4
)

g3(x) = 4.75 + 1.21585420370805288082 cos(
πx

4
)

+ 0.60792710185402613032 cos(2
πx

4
)

+ 0.13509491152311646856 cos(3
πx

4
)

+ 0.04863416814832160323 cos(5
πx

4
)

+ 0.06754745576155797382 cos(6
πx

4
)

+ 0.02481335109608216509 cos(7
πx

4
)

+ 0.01501054572479024465 cos(9
πx

4
)

8 CHRIS RACKAUCKAS

g4(x) = 6.875− 0.32715714790635031829 cos(
πx

4
)

+ 0.83926213965225634361 cos(2
πx

4
)

− 0.36378979074689778757 cos(3
πx

4
)

− 0.10132118364233828611 cos(4
πx

4
)

+ 0.15713689650139041578 cos(5
πx

4
)

− 0.18969077220200814945 cos(6
πx

4
)

+ 0.14031374247654027899 cos(7
πx

4
)

− 0.09295910712547210659 cos(9
πx

4
)

The results were then put into Mathematica to plot the generated func-
tions. The functions are plotted in order and on top of the function they are
approximating:

Figure 7.1. Functions g1 through g4 plotted on top of f1
through f4 respectively

Notice that f4, being the most complex function and including a discon-
tinuity, is the least well approximated. However, when these are all put
together, these form a picture that I would say is quite pretty:

A FINITE REPRESENTATION OF AN INFINITELY SMALL WORLD 9

Figure 7.2. The �nite sum representation of the in�nite
functions g1 through g4

8. Summary

The small world cutout is quite a lovely image, but as humans we can do
better than just a �nite representation. Thus I created a representation of
the cutout in function space using a Fourier Decomposition. After dealing
with many computational problems due to accuracy, �nal equations were
produced. With the �nite approximation of the in�nitely de�ned function, I
draw out the picture to make what I would call a lovely picture that expresses
how in�nitely many people are one. This is complete unity. This is the �nite
representation of the in�nitely small world.

References

[1] Khamsi, M. A. "Fourier Series: Basic Results." S.O.S Math. MathMedics, LLC. Web.
16 May 2012. <http://www.sosmath.com/fourier/fourier1/fourier1.html>.

[2] Olver, Peter. "Chapter 12, Fourier Series." Peter Olver's Home Page. University of
Minnesota. Web. 16 May 2012. <http://www.math.umn.edu/~olver/am_/fs.pdf>.

[3] Weisstein, Eric W. "Fourier Series." Wolfram MathWorld. Wolfram Research, Inc.
Web. 16 May 2012. <http://mathworld.wolfram.com/FourierSeries.html>.

