
Analysis of the Monte Carlo Method of Image
Generation

Chris Rackauckas
Oberlin College

April 2, 2012

Abstract

For my project I decided to invent a Monte Carlo method of image
generation. It reads in the image and uses the color values to gener-
ate a probability array. Using a psudorandom number generate with
this matrix, we create an image that is reminicent of the image we
generated the probability array from. An interesting detail about the
non-commutativity of this process to the black and white conversion
is explored.

1 Introduction

For my project I decided I wanted to in some way develop a program that
could generate pointilist-like images. Remembering how Monte Carlo meth-
ods of using random points can be used to estimate the area of a circle, I
decided to try to use this method of putting random points to generate the
image I wanted (sounds pointilist to me!). Thus I created a program that
follows these basic steps. First it reads in an image and generates a pixel
array. In order to do this in a simple manner, I used the Processing library on
Java so that the code for this was one line. From there I created a probability
matrix that gave a value from 0 to 1 according to what the brightness of the
pixel was (for each color). Thus at pixel i I would have that the probability
matrix P[] would have a value at i be (Pi). Thus I set the P [i] = b where
b is the brightness of pixel i. Thus the result is that that the P [] is thus a

1



matrix of values whose probabilities at a given i is equal to the brightness at
a given i.

With this matrix I then generate the picture by taking random numbers.
A random number is generated as in the uniform distribution [0, n] where n is
the number of pixels in the image. I use the random number by partitioning
the number into segements using the integer value and taking the decimal
value as the random number. Thus for the number X = x1.x2x3..., I would set
the value y = x2x3... to be the random number in the interval [x[1]−1, x1] and
compare that to P [x1]. If P [x1] > y, then I would increment the brightness
at pixel xi in my drawing photo, else I would do nothing.

This may be easier to understand with an example. Say we have a 10
pixel picture and the random number I receive is 4.36. I would then look at
P [4] > .36 and if this is true then I would increment the brightness of pixel
4 in my drawing photo, else I would not do a change.

Proof of Correctness It may be simple to see that this should draw the
picture when using a large amount of random numbers and small increment
values. This is because the probability of incrementing the brightness at
any given pixel is directly related to the brightness of the original image’s
pixel and thus we would expect the distribution of the brightness changes to
match the distribution of the original photo and thus draw the photo. We
can also prove this more mathematically. Take a random number X from a
uniform distribution [0,n]. Let b be the brightness of pixel i. Notice that the
probability X ∈ [i− 1, i− 1 + b] is simply the integral from i− 1 to i− 1 + b
of the probability density function of X which is b

n
. Thus given n random

numbers, the probability of incrementing i is b. Since this is true for any
i after n random numbers the probability of incrementing the brightness of
any point is simply the brightness of the point in the original picture.

This shows us that the distribution will be the same as in the original
photo. However, to receive the original photo we must also control the bright-
ness. Notice that if we take almost an infinitely many random numbers for
an n pixel Mona Lisa and increment the brightness in any increment case by
some finite number we will receive a white picture! Thus we must control
the end brightness of the photo by setting the number of random numbers
that will be chosen. To do so, assume that we want the expected brightness
of the photo to be equal to the brightness of the original photo. Assume
that you increment the brightness each time by the increment value k. Thus

2



the expected brightness of the photo is the expected number of increments
times the increment value. Notice that the expected number of increments is
equal to the probability of incrementing times the number of random num-
bers taken. The probability of incrementing is simply the average of the
probability matrix P []. Denote this average value as a If we take the number
of random numbers to be m, the expected number of increments is am. Thus
the expected change in brightness is simply kam. Given that the brightness
of the original picture, B, would be a known value, a would be a known value,
and k would be a parameter we can set, we can solve for m = B

ka
. Thus if we

take m random numbers we will have the expected brightness of the drawn
photo equal to the brightness of the original photo.

With the expected brightness being the brightness of the original photo
and the distribution of the increments being equal to the distribution of the
brightness of the original photo, we can conclude that this process will indeed
generate an image like the original photo

2 Non-CommunitivityWith Black AndWhite

Conversions

Knowing that this process will generate the image, I decided to make a
program that would use this processs to generate images. One startling
thing that I recognized was that there was two different ways that we could
implement color. One way is that we could take a random number and
then look at the probablility matricies for red, blue, and green all using this
random number and run this process, or grab a different random number
for each color. Notice that we can see that the expected brightness has no
difference! However, the distribution of the points drawn will change since
the colors would be correllated. This is easy to see since in the first case a
high random number would give a good chance of placing a red, blue, and a
green at a given point where as it would only effect one color in the second
case. Thus we would expect the brightness to be more ”clumped” in the first
case then the second case. Thus the contrast of the photo generated using
the first method will be different than the contrast of the photo generated
using the second method.

This may seem trivial since obviously there is going to be a correlation
of the brightness’s when we use the same random number for multiple cases,

3



but this gives a more startling result. Notice that if we do a black and
white conversion and then create the probability matrix, we correlate the
color values in a mannor like the first case. Thus if we do a black and
white conversion and then draw Monte Carlo, we would expect a higher
contrast than if we were to draw Monte Carlo and convert that photo to
black and white! Thus we see that doing a black and white conversion is not
commutative with the Monte Carlo drawing process.

To give more concrete results, I created a method that would run a sta-
tistical test to see if we could reject the null hypothesis that the mean values
of the contrasts were the same. Not surprisingly, we were able to reject the
null hypothesis. Thus in both theory and practice we have shown this holds,

3 Results

Due to the fact that the point class of Processing is currently broken, this
cannot be currently extended to doing point drawings instead of pixel incre-
ments. However, this can be extended to elipse drawing. A way to do this
would be to create a probability matrix that takes a square of 9 pixels as
the probablility value and instead of incrementing we would draw a random
elipse that fits within those pixels that has some alpha value. This in trun
should draw the photo using a Monte Carlo method that would look more
pointilistic than this version.

4 Conclusions

After successfully making a program that implements this technique and
testing its properties, I have confirmed that the theoretical analysis is indeed
true. Now it’s picture making time!

4



Probabilistically
Generated
Mona Lisa
With 9 Colors


	Slide 1

