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Abstract: The predictive power of machine learning models often exceeds that of mechanistic modeling
approaches. However, the interpretability of purely data-driven models, without any mechanistic basis is often
complicated, and predictive power by itself can be a poor metric by which we might want to judge different
methods. In this work, we focus on the relatively new modeling techniques of neural ordinary differential
equations. We discuss how they relate to machine learning and mechanistic models, with the potential to
narrow the gulf between these two frameworks: they constitute a class of hybrid model that integrates ideas
from data-driven and dynamical systems approaches. Training neural ODEs as representations of dynamical
systems data has its own specific demands, and we here propose a collocation scheme as a fast and efficient
training strategy. This alleviates the need for costly ODE solvers. We illustrate the advantages that collocation
approaches offer, as well as their robustness to qualitative features of a dynamical system, and the quantity
and quality of observational data. We focus on systems that exemplify some of the hallmarks of complex
dynamical systems encountered in systems biology, and we map out how these methods can be used in the
analysis of mathematical models of cellular and physiological processes.

Keywords: collocation; dynamical systems; neural ODE; systems biology.

1 Introduction

In physics, simple fundamental principles often suffice to derive equations depicting the behaviour of natural
systems. Through Noether’s theorem, for example, conservation of energy, momentum, etc. are linked to
continuous symmetries, from which models can be formulated and tested. There is an implicit trade-off
between the explanatory and the predictive power of modelling approaches (Baker et al. 2018). When there are
sufficient data about the underlying system, purely data-driven modelling, for example, with deep learning
models, is typically superior in predicting unseen behaviour of the system than mechanistic modelling
approaches, such as ordinary differential equations (ODE),

dY(t)
dt

= f (Y) (1)

or stochastic differential equations (SDE)

dY(t) = f (Y)dt + g(Y)dWt. (2)
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Here Y denotes the states described in the system, f (Y), the deterministic dynamics, g(Y) the stochastic
dynamics, and dWt is a Wiener Process increment (Gardiner 2009). Mechanistic models require us to spell out
all assumptions (types of interactions, reaction rate parameters, etc.) before we can proceed with analysis.
Especially if backed up by formal model selection and model checking (Kirk et al. 2013; Liepe et al. 2013, 2014),
and combined with carefully designed, discriminatory experiments, mechanistic models are able to deliver
insights into how natural or engineered systems work, and how we can control and guide their behaviour
(Gupta and Khammash 2014; Lakatos and Stumpf 2017; Milias-Argeitis et al. 2011). This tension between the
modelling schools, is sometimes overlooked by practitioners who are often invested in one of these fields.
But for many domain experts, people who are more interested in the scientific problem at hand, the choice of
modelling ansatz can and should matter a great deal, and therefore ought to be chosen with care.

Hybrid models, which here, following precedents in the literature (Baker et al. 2018), we define as
modelling approaches that share and combine aspects of mechanistic modelling as well as data-driven
modelling in order to arrive at better understanding of complicated systems, hold some promise. For example,
known mechanistic relationships could be modelled using ODEs or SDEs, and less well characterised aspects
of the system could be captured purely by data-driven approaches (Rackauckas et al. 2020). Defining and
refining the interface where the two modelling domains meet still requires a lot of work. For mechanistic
models, however, the advantages really come to the fore if the models are realistically parameterized. This
does not necessarily require us to know all parameters with high accuracy, but we should have at least
an assessment of confidence in each parameter (Kirk et al. 2015) (from which, for example, robustness of
solutions can be assessed). Parameterizing models of even moderate size is problematic and a well known
challenge in the systems biology, statistical inference for dynamical systems and inverse problems literature
(Kersting et al. 2020).

This motivates an alternative perspective on modelling, which can also loosely be viewed as bridging
the gap between mechanistic and data-driven modelling: focusing primarily on the qualitative features of
dynamical systems (Jost 2005). For example, many systems may be qualitatively more constrained than quan-
titatively: bifurcations in dynamical are the canonical example of such qualitative features that profoundly
shape system dynamics (Roesch and Stumpf 2019). An attractive alternative to making an explicit model
might be to determine all qualitative features of a dynamical system (from data or observations) and then
develop a data-driven model. One of the many uses of neural ODEs is precisely this. Neural ODEs have been
introduced by Chen et al. (2019) in 2018. Since then the approach as been extended in various directions:
Dupont et al. (2019) extended the approach to augmented neural ODEs; the use of neural ODEs for latent
systems is discussed in more detail by Rubanova et al. (2019); the technique of neural ODEs has also been
extended to other forms of differential equations, including SDEs independently by Liu et al. (2019) and Tzen
and Raginsky (2019); neural jump SDEs have been formulated by Jia and Benson (2019); and neural PDEs
have been introduced by Rackauckas et al. (2019). In this work, we focus on neural ODEs as introduced in
the original publication by Chen et al. (2019) and discuss alternative ways of fitting neural ODEs to observed
dynamics.

As the notion of a neural ODE is relatively new, their methodology will be outlined in the next section.
After that we illustrate the use and some of the factors determining the computational efficiency of neural
ODEs. The dearth of mathematical models for most biological systems is an issue for predictive biology, and,
perhaps even more so, for synthetic biology (Leon et al. 2016; Scholes et al. 2019). We believe that neural ODEs
have the potential to form a stepping stone between purely data-driven modelling and mechanistic modelling.
The contribution that this paper makes is to map out some of the practicalities that are encountered when
training neural ODE models on data from dynamical systems; with these results in hand there is clearly reason
to be optimistic about the scope of applying neural ODEs in systems and synthetic biology.
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2 Methods

2.1 Neural ODEs

A neural ODE (Chen et al. 2019) is an ODE in which the derivative is specified by a neural network (Murphy 2012). Choosing the right
network architecture is therefore a crucial challenge in the conceptual design of neural ODEs. Deep neural networks (Innes 2018;
Innes et al. 2018; LeCun et al. 2015) with multiple layers have become the most popular approach in this area. Each layer of the
neural network can be interpreted as a regression model and with this in mind we can start to reason about the way deep neural
networks work.

We start by considering a single layer. Let X be a real m × n-matrix representing the input of a regression model, , and
let Y be a real m × o-matrix representing the output of this model. For sake of simplicity, we consider input and output to be
one-dimensional vectors of the same length, i.e. m = 1 and n = o. In the following, the observed input is referred to as X and the
observed output is referred to as Y, respectively. Together, the pair of X and Y relates to the training data. We learn the relationship
of X and Y with the linear regression model, which predicts Y∗ for a given X,

W,B(X) = Y∗ = X ×W + B (3)

where W is an unknown weight n × o-matrix, and B is an unknown bias m × o-matrix. In the training phase, we optimise the
model’s parameters W and B by minimising the distance d between observation and prediction,

̂W, ̂B = min{d(Y,Y∗)} = min{d(Y,X ×W + B)}, (4)

where Y denotes the observed output of the training data, and Y∗ the model’s prediction for the training input X. For any new
instance of X, which we denote by ̃X, the prediction of the model is then given by


̂W, ̂B( ̃X) = ̃X ×W + B. (5)

Here we introduced the example model as a linear model. However, most deep learning models – including the ones in
this work – are intended to capture non-linear relationships (LeCun et al. 2015). The main difference between a linear regression
model, such as M, and a neural network layer L,

L(X) = Y = 𝜎(X ∗ W + B), (6)

is the activation function 𝜎 which performs a non-linear transformation on the data. In this work the hyperbolic tangent function
is chosen as the activation function 𝜎. Single layers, such as L in Eq. (6), are the core elements of deep neural network structures.
In order to move from a non-linear single layer model to a deep neural network NN we simply stack multiple single layers,

NN(X) = Y = (L1˚ L2˚… ˚ Ll−1˚ Ll)(X), (7)

where l is the total number of layers and the output Yi of layer Li, is the input Xi+1 of layer Li+1 for i ∈ (2, 3,… , l− 1). The first layer
is referred to as the input layer and an the lth layer is referred to as the output layer. The layers between input and output layer
are the hidden layers. The activation functions as well as the dimensions of the weight and bias matrices may vary between the
layers.

With a neural network as defined in Eq. (7), we can construct a neural ODE where the derivatives are modelled by NNs. As
an example ODE we consider a first order ODE with n states which are denoted by U. Note, that we use U′ rather than ̇U to denote
the derivative with respect to time for notational convenience later. The right-hand side of the ODE is given by the derivative with
respect to time, t, denoted by the function f ,

U′ = dU
dt

= f (U). (8)

For example, in a conventional mechanistic modeling setting in systems biology, we might be able to define f as a polynomial
presenting rate equations following the laws of mass action kinetics (Schnoerr et al. 2017). In such settings the structure of
f is implicitly given, and unknown parameters may be inferred utilising observed data and Bayesian approaches such as
approximate Bayesian computation (Tankhilevich et al. 2020; Toni et al. 2008). However, more often than not we do find ourselves
in circumstances where we are not able to define f that concise. This could be due to a variety of reasons; for example, the required
assumptions for mass action kinetics are not met, or, the list of influencing components is incomplete. In these scenarios, neural
ODEs can be of great value. In the neural ODE, instead of a polynomial as in the conventional case, a neural network, NN (Eq. (7)),
is used to model f . We denote the modeled derivative by ̃U′,

̃U′ = NN(U). (9)



4 | E. Roesch et al.: Collocation based training of neural differential equations

The interpretation of the output of the neural network, NN, in the neural ODE, relates to the predicted gradient, dU∕dt, in
the states U over the time interval dt. We can also retrieve the predicted ODE solution ̃U using any ODE solver of choice,

̃U = ODEsolver(NN, u0, t). (10)

The attributes u0 and t denote the initial condition and the time span of interest, and specify the prediction format. Note that
whilst the output of the neural network is the gradient at a specific position in the state space, the solution of the neural ODE is a
path through the state space. We refer to ̃U as the prediction of the neural ODE.

2.2 Training neural ODEs with ODE solvers

During training we fit the neural ODE model to some observed data U. The aim is to find model parameters that describe the
observation U; these parameters are features of the neural ODE, and are not to be confused with the kinetic parameters of the
dynamical system that we seek to capture. Prior to training, the neural network NN modeling the derivative ̃U′ in the neural ODE
(Eq. (9)) is initialised. For the parameters pinit we choose (W1,B1,W2,B2,… .,Wl,Bl), where l is the total number of layers in NN,
Wi are samples from the Glorot uniform distribution (Glorot and Bengio 2010), and Bi is zero for i ∈ (1, 2,… , l). We optimise the
parameters by minimising the distance between the observation, U, and the current prediction of the neural ODE, ̃U. We employ
Euclidean distance, defined as

d(A,B) =

√
√
√
√

m
∑

i=1
(ai − bi)2

, (11)

where m is the length of A and B. In this setting A relates to the observed data, U, and B relates to the current prediction of the
neural ODE, ̃U. For clarity of notation, we assume the observation U to be one dimensional, e.g. the system consists of one state
only. We denote it by U = (u1,… , um) for m time points. Similarly, the prediction of the neural network is then referred to as
̃U = (ũ1,… , ũm) for the same m time points. The loss function (Figure 1, loss 1) is then given by

loss1(p) = d(U, ̃U) =

√
√
√
√

m
∑

i=1
(ui − ũi)2 =

√
√
√
√

m
∑

i=1
(ui − ODEsolver(NN(U))i)2

, (12)

where ODEsolver(NN(U))i relates to the solution of the ODE at the ith training point. Our optimiser of choice is Gradient Descent
(Innes 2018). For the training we use a fixed number of training epochs.

In each training epoch, we calculate the loss value with the defined loss function for one set of parameters. By fixing the
number of training epochs (compared to for example setting a cutoff loss value) we are able to control the number of tested
parameters and the number of loss evaluations. The latter is especially important in regards to the overall performance. As the
choice of the ODE solver and it’s precision (which is related to m) is flexible, the loss function evaluation can get computationally
expansive; this holds especially for large m. In successful training, we observe the general trend of a decreasing loss value over
time. However, due to local optima, there are also areas in parameter space that may temporarily increase the loss.

2.3 Training neural ODEs with the collocation method

Training neural ODEs using ODE solvers has been shown to perform well in previous studies (Che et al. 2018; Rackauckas et al. 2020).
The precision, especially for thoroughly trained models, tends to be high. However, the time performance of this training strategy
does suffer, especially for long time series as even the fastest numerical solvers for ODEs are prohibitively slow given the number
of training runs required. Furthermore, noise in the observations can easily disturb the learning behaviour.

Here we use an alternative approach of calibrating neural ODEs against the behaviour of dynamical systems. Using collocation
methods (Liang and Wu 2008), we construct a new loss function for neural ODEs, which we show to be more efficient and robust.
This new strategy involves estimating the solution and derivative of the observation prior to the training. In this new loss function
we compare the output of the neural network for a solution directly with the estimated derivative of the observations. In this
way we are able to avoid using ODE solvers in each loss evaluation. And furthermore, the estimator of the derivative allows us to
smooth out noise.

The collocation method used in this work originates in the field of inverse problems of differential equations (Liang and
Wu 2008) and has been implemented in the Julia package DiffEqParamEstim.jl. In inverse problems, the focus is on the estimation
of parameters from observations of the state of the system. We denote the output of the true data generating process, F, by U, with

U = (ut1 ,… , utm ), uT
ti
= (us1

ti
,… , usn

ti
). (13)

This describes a dynamical system where m is the number of time points t, and n is the number of states, s, in the system. Here we
assume that our observations, V, differ from the actual state, U, by some noise. We thus have for V,

V = (𝑣t1 ,… , 𝑣tm ), 𝑣

T
ti
= (𝑣s1

ti
,… , 𝑣

sn
ti

). (14)



E. Roesch et al.: Collocation based training of neural differential equations | 5

Lo
ss

 1

Collocation

Estimated solution Ue

Estimated derivative U'e

NN p
 Ue U'e

Loss 2
minimisation

pv

pw

Lo
ss

 2

Loss 2 (p):  d(U'e, U'*)

U

Time Time

U

U

NN p(Ue)

U"*

Time

Predicted derivative U'*

Observed solution U

NN p

Loss 1
minimisation

ODE solver

pv

pw

Lo
ss

 1

Loss 1 (p):  d(U, U*)

Time

U

NN p

build ODE

U*

Predicted solution U*Observed solution U

Observation of F

Constructed f

Constructed F

Neural network f

ODE solver Collocation

Loss 1

Loss 2

Lo
ss

 2

 Compare
solutions

Compare
derivatives

Figure 1: Two different training strategies for neural ODEs (loss 1 and loss 2) are described and compared. The most important
difference between the two loss functions is that in the first loss function we compare solutions – we refer to them as F
– whereas in the second loss function we compare derivatives – these we refer to as f . This first training strategy (loss 1) relies
on the distance between some observed data (blue) and the constructed ODE solution (purple) based on the neural network
modeling the derivative. We optimise the parameters of the neural network by minimising this distance. In the second training
strategy (loss 2), we estimate the solution (yellow) and the derivative (green) of the observed data (purple) using a collocation
method. Subsequently, we compare the estimated derivative with the predicted derivative (red) of the neural network evaluated
at the estimated solution. Again, we use an optimiser to find the parameters of the neural network that minimise the described
distance.

For each time point ti we define the two local neighbourhoods N1,ti
and N2,ti

N1,ti
=

⎛

⎜

⎜

⎜

⎜
⎝

1 ti − t1

1 ti − t2

… …
1 ti − tm

⎞

⎟

⎟

⎟

⎟
⎠

, N2,ti
=

⎛

⎜

⎜

⎜

⎜
⎝

1 ti − t1 (ti − t1)2

1 ti − t2 (ti − t2)2

… … …
1 ti − tm (ti − tm)2

⎞

⎟

⎟

⎟

⎟
⎠

, (15)

and a diagonal kernel matrix Hti

Hti
=

⎛

⎜

⎜

⎜

⎜
⎝

Ht1
ti

… … 0
… Ht2

ti
… …

… … … …
0 … … Htm

ti

⎞

⎟

⎟

⎟

⎟
⎠

, (16)

and H
t j
ti
=

K

(

(ti−t j
h

)

h
, with h = m− 1

5 ⋅ m− 3
35 ⋅ log(m)−

1
16 , and K is the Epanechnikov kernel. The estimated solution of the ODE at

time point ti and its derivative at time point ti are then given by

ûi = eT
1 ∗ in𝑣(NT

1,ti
∗ H ∗ N1,ti

) ∗ NT
1,ti
∗ H ∗ VT (17)
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and
û′i = eT

2 ∗ in𝑣(NT
2,ti
∗ H ∗ N2,ti

)NT
2,ti
∗ H ∗ VT

, (18)

where e1 = (1,0)T and e2 = (0, 1,0)T . We denote the summarised estimates by ̂U = (û1,… , ûm) and ̂U′ = ( ̂u′1,… , ûm
′). In order to

evaluate the fit of a parameter combination we compare the estimated derivative ̂U′ and the resulting prediction of the neural
network evaluated at the estimated solution of the ODE ̂U. We denote the latter as ̃̂U′, where

̃
̂U′ = (̃û′1,… ,

̃û′m), ̃û′i = NNp(ûi), (19)

and p is the currently tested parameter combination. We define this second loss function (Figure 1, loss 2) for the parameter p as

loss2(p) = d( ̃̂U′
,
̂U′) =

√
√
√
√

m
∑

i=1
(̃û′i − û′i )2 =

√
√
√
√

m
∑

i=1
(NNp(ûi)− û′i )2

, (20)

where d is again the Euclidean distance (Eq. (11)).
In this loss function we compare derivatives. By doing so we avoid having to use an explicit ODE solver to produce the

predicted time series based on the current neural network in each loss evaluation. This is of advantage, because – even when
using efficient, state of the art ODE solvers – the computation of the ODE solution becomes quickly too expensive to be practical
when performed in a highly repetitive manner. In the standard neural ODE model we use the ODE solver in each loss evaluation,
therefore each training epochs requires an ODE solver run. Using the collocation method avoids these computations.

3 Results

Here we outline how neural ODEs are trained. We sketch how different factors affect this training, and illustrate
the use and usefulness of neural ODEs in the context of representative exemplar dynamical systems. Julia
code implementing the suggested training approach as well as all examples of this article can be found at
https://github.com/ElisabethRoesch/neural_ODE_fitting. Reference implementations of the approach can be
also found in the DiffEqFlux.jl library (Rackauckas et al. 2020).

3.1 Damped oscillator

We train neural ODEs with suitable training data obtained by solving the dynamical systems (or suitable
experimental data in applications to real-world systems). Solving differential equation systems can become
computationally limiting and we can often employ alternatives, such as the collocation method, the use of
which we illustrate here. First, we present the training results for a damped oscillatory system (Figure 2).
Damped oscillations are frequently encountered in technical and biological systems (Silk et al. 2011), and a
generic example (following (Chen et al. 2019; Rackauckas et al. 2019)) of such a system is given by,

dX
dt
= −0.1X3 − 2Y3

, (21)

dY
dt
= 2X3 − 0.1Y3

, (22)

where we have chosen parameters that give the desired behaviour, but which are to all intents and purposes
generic. We generate our observation by solving the system (with the initial conditions of X = 1.5 and Y = 0.0)
at 100 time points using the Tsitouras 5/4 Runge-Kutta method (Rackauckas and Nie 2017).

In order to learn the underlying dynamics of the system, we model the derivative using a deep neural
network with three layers. The first layer, is a cubic function, while the second and third layers are dense
layers with 100 nodes each. As an activation function we choose the hyperbolic tangent. We initialise the
model’s parameter W using the Glorot uniform distribution (Glorot and Bengio 2010), and zeros bias B. For
the optimiser we chose Gradient Descent with a learning rate of 0.001, and we train for 800 epochs (we have
tested other combinations of solvers and optimisers and obtain the same results).

Training of the neural ODE with the collocation method is vastly quicker than training with an Euclidean
norm loss function, simply because we do not have to solve the ODE in each training epoch (Figure 2). The
accuracy of training, in turn, depends primarily on the accuracy of the collocation method (Figure 5).

https://github.com/ElisabethRoesch/neural_ODE_fitting
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Figure 2: We train the neural ODE model with the two training strategies on data of the damped oscillator: Loss 1 (purple)
represents the standard procedure using the Euclidean distance between the observation and the prediction of the neural ODE
model. Loss 2 (green) represents the loss where we compare the predicted derivative of the neural network in the neural ODE
directly with the estimated derivative of the observation using the collocation method. We show how the loss value decreases
over the training (800 epochs) as well as the loss evolution over time (145 s). As the collocation approach results in significant
shorter training time, we only show the loss evolution until the collocation approach terminates. For the selected training
epochs (a) to (e) (red), the current predictions (model trained with loss 1: Purple, model trained with loss 2: Green) are shown
alongside the observation (grey), respectively.

We also find that collocation loss decreases more quickly (and continuously) than the Euclidean distance
does (the learning rate of the optimiser is identical in both instances). This simply reflects that collocation
directly represents the right-hand-side of Eq. (8) (or Eq. (9)). So in many practical applications, this suggests,
that we may prefer the collocation methods because of its speed and convenience.

3.2 Van der Pol oscillator

As a second example, we choose the Van der Pol (VdP) oscillator. The VdP oscillator has been an important
example system in the dynamical systems literature, and has served as a starting point (Heinonen et al. 2018)
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for e.g. the analysis of neuronal action potentials (Estakhroueieh et al. 2014). It carries the hallmarks of more
complex models of oscillatory systems, and it is defined by the two differential equations

dX
dt
= Y, (23)

dY
dt
= 𝜇 ⋅ (1− X2) ⋅ Y − X, (24)

and here we consider, for concreteness, the system for 𝜇 = 1 as this results in moderate gradients (for high
values of 𝜇 gradients are no longer well captured by the collocation method). We simulate the observed data
by solving the ODE at 200 time points using again the Tsitouras 5/4 Runge-Kutta method (Rackauckas and
Nie 2017). As initial conditions we choose X = 2.0 and Y = 0.0. This builds the base of the training data.
Additionally, for the VdP example we modify the training data, because we want to stress test our model and
training strategy; we induce the data with four levels of technical (observational) noise. This corresponds to a
state-space model (Durbin and Koopman 2012), where the data are perturbed by additive Gaussian noise. The
levels chosen here reflect different noise intensities and are: no noise (𝜎 = 0), low noise (𝜎 = 0.1), moderate
noise (𝜎 = 0.2), and high noise (𝜎 = 0.5), where 𝜎 is the parameter of a zero centred Normal distribution. For
each case, the training set covers one period and the testing set includes five periods (Figure 3).

To model the gradient in our VdP neural ODE model, we use a neural network with four layers, where input
and output layer consist of 100 parameters each, and the two hidden layers of 2500 parameters, respectively.
The activation function, initialisation and optimiser, are chosen as in our first example, the damped oscillator
(described in the previous Section 3.1). Using neural ODEs trained with the collocation method, we are able
to capture the core structure of the VdP oscillator – the limit cycle – for all noise levels. In the training
period the prediction aligns sufficiently well with the ODE solution for all noise levels (final loss values on
training data for no/low/medium/high noise: 0.78, 2.51, 5.35, 12.97). For medium and high noise, however, the
extrapolation in the testing area, does not capture the true ODE solution. However, the general, or qualitative
structure of the solution is still recognisable.

High
noise

4000
Training epoch

1

M
noise

Low
noise

No
noise

Model predictionNoisy training data

ODE solution

System over time
351

/ /

Exact training data

Figure 3: We illustrate the performance of the neural ODE model trained with the collocation method using the Van der Pol
oscillator. More specifically, we focus on how training and testing are affected when noise is added to the solution. On the left
side we show how the loss value evolves over the course of the training process. This is shown for four training sets with high,
medium, low, and no noise (dark red, medium red, light red, and grey). We model the noise with a Gaussian distribution,
 (0, 𝜎). The levels of noise are: no noise (𝜎 = 0), low noise (𝜎 = 0.1), medium noise (𝜎 = 0.2) and high noise (𝜎 = 0.5). The
loss values drops the slowest for high and medium noise, and the final loss value, e.g. the loss value of the trained model, is
higher for training data with higher noise. On the right side of the figure, we show the model’s prediction. This is visualised
alongside the training data (red scatter), as well as the true ODE solution (grey). For no and low noise the predictive power is the
highest. For medium and high noise, the shape of the periods are still clearly recognisable in the prediction of the neural ODE
model, however prediction and reference data do not align.
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In the test setting used here the training points of the models cover approximately one period of the
oscillator (Simulation time span is from 0.0 to 7.0) for all noise levels. In reality, however, we often face the
challenge of incomplete data. Therefore, we are interested in investigating whether a coverage of 100% is
necessary in order to learn the dynamics of the underlying system – using neural ODEs trained with the
collocation method (Figure 4). We simulate new training data of the VdP system for a second test for the
neural ODE model trained with our collocation method. In this instance, we generate training data with low
coverage (70, 85 and 90% of the period) and data with high coverage (100, 115 and 120% of the period).

X

115%

351 8 System over time

70% 85% 90%

100%115%120%

85%70%

351 351 65

X

Y

X

Y

Y

Training end Prediction

ODE solution

Training data

System over timeSystem over time

120%

351 8.5
System over time

Training start 

VdP limit cycle

Figure 4: We demonstrate the predictive power of the neural ODE model on incomplete and over-complete training sets for the
Van der Pol oscillator. In the centre we show the ODE solution of the Van der Pol oscillator (grey line) with the initial condition,
e.g. Training start (grey dot) and various last training data points, e.g. Training end (red), in the state space (X,Y). The intention
of this figure is to show how the prediction performance is affected, by the position of the last training data point. We compare
six end points; they are at 5.0, 6.0, 6.5, 7.0, 8.0, and 8.5 and therefore cover approximately 70, 85, 90, 100, 115, and, 120% of
one period of the oscillator. While we train on different levels of completeness, we test all models over five periods. In all cases
the circular structure is learnt. Shown in the top left corner, the prediction of the model trained on 70% of the data (green line)
does not align with the reference ODE solution (grey, dashed line). However, positioning the end point of the training data to
85% is enough to learn the dynamics of the system (top right). For 85% the endpoint is over the last curve of the limit cycle of the
oscillator which may reason for this. Adding more points to training data, e.g. 100, 115, 120% does only cause no (top right,
bottom right) or minor differences (bottom left).
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Figure 5: This figure shows how the collocation method
reacts to sparsity in the training data. The normalized
minimal loss value obtained during the training phase is
plotted against the provided data size of the underlying
training set. Neural ODEs are trained on data of the
damped oscillator example defined in Eqs. (21) and (22).
The selected data sizes are 10, 25, 50, 100, 200, and
300, respectively. We observe that with increasing data
density, the minimal loss value is decreasing.

Our analysis suggests that in order to archive the highest predictive power it is necessary to include all
key features defining the structure of the systems dynamics in the training data. In the given example, this
includes the final (forth) curve of the limit cycle of the VdP oscillator. In the case of the lowest data coverage
training data (70%), we are only able capture the core of the dynamic system – the limit cycle (final loss value
for 70%: 0.86 on training data). However, the prediction for the testing periods does not align perfectly with
the ODE solution. In all other cases the given information in the respective training data is sufficient to predict
highly accurate, even with e.g. 15% of period missing (final loss value for 85%: 0.76 on training data).

Training of data-driven methods typically requires considerable amounts of data, and we would encour-
age their use only in such situations unless we have explicit ways to deal with sparsity in the training data
(Žurauskienė et al. 2014). In Figure 5 we show that collocation training is nevertheless robust against data
sparsity (in the regime where data-based modelling seems appropriate).

4 Conclusion

We have demonstrated the efficient and effective use of collocation methods in the training of neural ODEs.
With a damped oscillator as an example, we have shown that training is faster and the (collocation) loss
decreases more continuously over the course of the training, compared to conventional training with an
Euclidean loss function as this requires explicit numerical solution of the ODE at each step. We know that in a
real world scenario, the true signal will often not be accurately measurable. Therefore, we have also simulated
training data in which the observation of the system deviates from the true ODE solution in a controlled
manner. This has allowed us to map out the dependence of neural ODEs trained with the collocation method
to a number of real-world data issues.

First, we have investigated how the performance of neural ODEs trained with the collocation method is
affected by the addition of noise to the training data using the Van der Pol oscillator. Second, we have analysed
how the modelling performance deteriorates as the size of the training data decreases. Noise in data will be
a near ubiquituous problem in systems biology application; but neural ODEs trained with the collocation
method show encouraging robustness to such noise. We note that in the envisaged applications we will always
be in a data-rich regime; noise will be more widespread and its analysis more important, than the problem
of data sparsity (which is known to affect interpolation methods quite generally). Our analysis suggests that
the general structure (e.g. the structure of the limit cycle) of a dynamical system can still be learnt even in
the presence of substantial noise. For moderately sparse data we are able to capture the system’s structure as
reflected by the gradient field. However, like all methods that seek to provide data-driven descriptions – such
as Gaussian processes (Rasmussen and Williams 2006) or recurrent neural networks (Che et al. 2018) – the
quality of the neural ODE as a description of the system rapidly deteriorates as data become too sparse. In the
version used here, this deterioration is not captured to the extent it would be by Gaussian processes, where
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the variance reflects the spacing of training points. On the other hand, neural ODEs capture the connected
nature of the system’s states better than the conventional single-output Gaussian processes; multi-output
Gaussian processes (Álvarez et al. 2010; Žurauskienė et al. 2014) could offer a multi-variate perspective, but
have only rarely been used. In combination with other non-parametric Bayesian methods, such as Dirichlet
processes (Crook et al. 2019; Murphy 2012), it may thus be possible to generate flexible hybrid modelling
frameworks.

We want to reiterate the importance of hybrid models – modeling approaches which bridge the two areas
of mechanistic and data-driven modeling (Baker et al. 2018). In many cases mechanistic models are superior
at explaining and understanding, while data-driven modelling tends to have higher predictive power. We
encourage the use of hybrid models as they are have the potential to perform well in both areas. Neural ODEs
(Chen et al. 2019) represent one methodology that falls into this category. Hybrid models such as neural ODEs
could also help with improving modelling performance, as they provides the flexibility to incorporate partial
prior knowledge. For neural ODEs, in particular, interpretability of system dynamics can also result, as by
training the neural ODE, we are actually able to learn the whole vector field; this can provide mechanistic
insights (Jost 2005; Tyson et al. 2003). From the perspective of mechanistic modeling, if there is insufficient
knowledge to develop ODE or SDE models, but where there is a substantial amount of data, hybrid models such
as a neural ODE model might be a good choice. In systems biology specifically, we see great potential of neural
ODEs for systems such as a cellular signalling systems, ecological dynamical systems, or electrophysiological
processes in the nervous system. With the collocation method as a new training strategy for neural ODEs, we
are able to train the models faster, than is possible using the usual way of fitting ODE models to observed
data. The main advantage of this speed, in our opinion, is that it allows us to explore more models, and larger
models more comprehensively. And in situations where we lack mechanistic models this is a highly desirable
thing (Babtie et al. 2014; Scholes et al. 2019).
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