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Outline

Our investigation will be conducted as follows:

1 Begin by looking at the scienti�c data.

2 Introduce the Budyko-Widiasih model and its conclusions.

3 Examine the results of numerical simulations to the

Budyko-Widiasih model.

4 Find an approximation to solutions to the Budyko-Widiasih

model.
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The Possibilities

Geological and paleomagnetic evidence indicates that glaciers

grew near the equator during the last two Neoproterozoic

glacial periods.

There are di�erent hypotheses as to the exact nature of these

glaciations:

1 The Snowball Earth Hypothesis: Glaciers covered the entirety

of the Earth's surface.

2 The Slushball Earth Hypothesis: Continents completely

covered in ice, belt of free ocean.

3 The Thin-Ice Hypothesis: Glaciers completely covered the

Earth, but the ice is thin at the tropics.

4 The Jormungand Hypothesis: Glaciers mostly covered the

Earth, ice is not snow covered near the tropics, and a belt of

free ocean existed.
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Evidence for Extreme Glaciations

The magnetic orientations of rocks tell us the continents were

near the equator 750 million and 580 million years ago.

But there was glacial debris on these continents during this

period:

Glaciers today only survive 5,000 meters above sea level (4,000
in the last ice age).
These contained iron-rich rocks which implies little to no
oxygen in the oceans and atmosphere.
Rocks known to form in warm water accumulated just after
the glaciers receded (evidence for strong hysteresis).

Just after the proposed glaciation is the Cambrian Explosion.

Reference: Snowball Earth, Scienti�c American, Ho�man and

Schrag.
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The Snowball Earth Hypothesis

Glaciers covered the entirety of the Earth's surface.

Life survived in small communities near hot springs.

The isolation explains the Cambrian Explosion.

CO2 built up because of the lack of silicate weathering caused

the abrupt change.
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Evidence Against the Snowball Earth Hypothesis

There is evidence that many sponges survived the

Neoproterozoic glaciations.

There is evidence that photosynthetic eukaryotes thrived both

before and immediate after the Snowball episodes.

New evidence that life can survive under miles of glaciers does

not apply to complex life.

Reference: The Jormungand Glocal Climate State and Implications

for Neoproterozoic Glaciations, Abbot et al.
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The Slushball Earth Hypothesis

Continents completely covered in ice, belt of free ocean.

This would allow complex life and photosynthetic eukaryotes

survive.

The Slushball models do not seem to have a strong enough

hysteresis to account for the CO2 measurements.

The Slushball Model of Liu and Peltier (2010) occur with CO2

O(100− 1000) ppmv
Measurements by Bao et al. indicate values one or two orders
of magnitude more!
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The Thin-Ice Hypothesis

Glaciers completely covered the Earth, but the ice is thin at

the tropics.

The thin ice would allow photosynthetically active radiation to

penetrate to the ocean below.

Such a solution is possible if bare sea ice has a high

transmissivity and an albedo lower than that of snow covered

ice.

Has not been found in a global climate model so far, and there

is debate as to whether the parameter regime is realistic
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The Jormungand Hypothesis

Mixture of Slushball Earth and Thin-Ice.

Ice sheets almost cover the entire Earth, though those near the

tropics are not covered in snow.

This is a solution that global climate models have found.

�There is strong hysteresis associated with the Jormungand

state, which is to say that the Jormungand state and one or

both of the other states are stable for a wide range of pCO2�.

(Abbot 2011)
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Introduction to the Budyko-Widiasih Model

The Budyko-Widiasih Model is an Energy Balance Model

(EBM).

It is designed to examine the movement of the ice-line.

As a lower order model, dynamical systems theory can be used

to verify the existence of a Jormungand state.
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The Budyko-Widiasih Model

y is the sine of the compliment of the polar angle (the latitude

as written from 0 to 1).

η is the ice-line, the latitude of furthest extent of the Earth's

polar glaciers.

T (y , η) is the annual average surface temperature as a

function of latitude and the ice-line.

M is the meridional heat transport, the transport of heat from

one latitude to another.

These quantities are related in the following manner:

R
∂T

∂t
= Ein − Eout −M,

∂η

∂t
= ε(T (η, η)− Tc).

T (η, η) = 1
2
(limy→η− T (η, η) + limy→η+ T (η, η)).

Tc is the critical temperature to melt the glaciers, −10◦C .
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The Energy Terms

Ein = Qs(y)(1− α(y , η)), Eout = A+ BT , M = C (T − T ).

s describes the distribution of the insolation as a function of

latitude. It can be well-approximated by a quadratic.

α is the albedo of a latitude as a function of the ice-line.

T =
´ 1
0
T (y)dy , the average temperature of the Earth's

surface.

Eout is the Budyko-Sellers model veri�ed by satellite data.

M is a relaxation to the mean.
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The Albedo Function

The Budyko model used the albedo function as follows:

α(y , η) =


αs , y > η

αw , y < η
1
2
(αs + αw ), y = η,

where αs > αw .

By Christopher Rackauckas Oberlin College 13/44



The Scienti�c Debate The Budyko-Widiasih Model Numerical Solutions Analytical Approximation Conclusion

Solution to the Budyko-Widiasih Model

We are looking for a solution to understand the dynamics of the

ice-line, that is a function h that satis�es

∂η

∂t
= εh(η).

Solutions to the Budyko-Widiasih Model satisfy

h(η) =
Q

B + C

(
s(η)(1− α(η, η)) + C

B
(1− α(η))

)
− A

B
− Tc ,

where

α(η) =

ˆ 1

0

α(y , η)s(y)dy .

By Christopher Rackauckas Oberlin College 14/44



The Scienti�c Debate The Budyko-Widiasih Model Numerical Solutions Analytical Approximation Conclusion

McGehee-Widiasih

McGehee and Widiasih utilized the Budyko albedo function and

solved for an approximation to

∂η

∂t
= εh(η).
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An Extension to the Albedo Function

We wish to introduce the idea of bare sea ice into the albedo

function.

As noted before, the albedo of bare sea ice is less than that of

snow covered ice.

When the ice-line grows past a certain latitude ρ, it enters the
Hadley cell circulation zone.

This would lead to more evaporation than precipitation leading

to bare sea ice.
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Abbot's Albedo Function

Abbot et al. introduced the idea using the following albedo

function:

α(y , η) =


α2(y), y > η
1
2
(αw + α2(η)), y = η

αw , y < η,

where

α2(η) =
1

2
(αs + αi ) +

1

2
(αs − αi ) tanh(y − ρ).
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Numerical Solution Using Abbot's Albedo Function
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Hadley Cells

By Christopher Rackauckas Oberlin College 19/44



The Scienti�c Debate The Budyko-Widiasih Model Numerical Solutions Analytical Approximation Conclusion

Hadley Cell E�ect
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Hadley Cell E�ect (Continued)
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Hadley Cell Intensi�cation

Poulsen and Jacob examined the Hadley cells' circulation at

the onset of Snowball Earth

They concluded that the Hadley cell circulation abruptly

intensi�es and then abruptly weakens.
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Resulting Albedo Function

The resulting albedo function would then be complex:

As the ice-line heads towards the equator, the ice in the
Hadley cell area would be mostly bare due to the evaporation.
How much the Hadley cell e�ect increases e�ects how close to
αi the albedo becomes.

We can then understand the system by bounding its

possibilities between two models:

An albedo function which becomes instantly αi in the Hadley
cell zone due to increased Hadley cell e�ect.
The albedo in the Hadley cell zone changes linearly from αs to
αi .

The albedo of the Earth's system will be underestimated in the

�rst function, resulting in a maximum equilibrium ice-line.
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The Instant Jormungand Albedo Function

The Instant Jormungand Albedo Function is de�ned as:

η < ρ η > ρ

α(y , η) =



αs , y > ρ

αi , η < y < ρ

αw , y < η
1
2
(αs + αb(η)), y = ρ

1
2
(αi + αw ), y = η

α(y , η) =


αs , y > η

αw , y < η
1
2
(αs + αw ), y = η

where αw < αi < αs .
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Instant Jormungand Albedo Function Solution
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The Linear Jormungand Albedo Function

The Linear Jormungand albedo function is de�ned as:

η < ρ η > ρ

α(y , η) =



αs , y > ρ

αb(η), η < y < ρ

αw , y < η
1
2
(αs + αb(η)), y = ρ

1
2
(αb(η) + αw ), y = η

α(y , η) =


αs , y > η

αw , y < η
1
2
(αs + αw ), y = η

where

αb(η) =
αs − αi

ρ
η + αi ,

and αw < αi < αs .
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Linear Jormungand Albedo Function Graphs
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Linear Jormungand Albedo Function Solution
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Stable Equilibrium Result

The Budyko-Widiasih suggests that when taking into account

the change due to the weakening (and eventual halt) of the

Hadley cells, the stable large ice-line solution is a Jormungand

state.

This runs counter to the thin-ice and Snowball Earth

hypotheses.

The bifurcation diagram shows that the Jormungand model

can produce the necessary hysteresis.
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Hysteresis of the Jormungand Model

We model the e�ect of increasing CO2 levels as decreasing the

term A.

We can solve for the value of A required for an equilibrium η:

A(η) =
B

B + C

(
Qs(η)1− α(η, η)) + C

B
Q(1− α(η))

)
− BTc .

We can then use a bifurcation diagram to analyze the e�ect on

the stable ice-line solutions.
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Bifurcation Diagrams
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Problem Statement

We wish to �nd an analytical approximation to h(η) for the
Jormungand Linear model which does not require a numerical

integration.

We will begin following McGehee-Widiasih and end using a

fast-slow approximation.

Note: McGehee-Widiasih have already solve h(η) for η > ρ, so
our goal is to solve h(η) piecewise.
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Step 1: Split the Temperature Function

Let

T (y , t) =


U(y , t), y < η

V (y , t), η < y < ρ

W (y , t), y ≥ ρ
1
2
(U(η, t) + V (η, t), y = η.
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Step 2: Second-Order Legendre Approximation

Assume

U(y , t) = u0(t)p0(y) + u2(t)p2(y)

V (y , t) = v0(t)p0(y) + v2(t)p2(y)

W (y , t) = w0(t)p0(y) + w2(t)p2(y),

where p0(y) = 1 and p2(y) =
1
2
(3y2 − 1).
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Step 3: Write the Model in Terms of the u's, v's, and w's

η̇ = ε(T (η, η)− Tc)

u̇0 =
1

R
(Q(1− αw )− A− (B + C)u0 + CT (η))

.

.

.
.
.
.

.

.

.

ẇ2 =
1

R
(Qs2(1− αs)− (B + C)w2,

where

T (η, η) =
1

2
(u0 + v0) +

1

2
(u2 + v2)p2(η),

T (η) = ηu0 − (η − ρ)v0 +
1

2
(η3 − η)u2 − (

1

2
(η3 − η)− k)v2 + (1− ρ)w0 − kw2,

k =
1

2
(ρ3 − ρ).
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Substitutions

Repeatedly substitute in functions of the u's, v's, and w's to

eliminate variables and receive variables with solutions.

Many variables could then be written like:

ė =
1

R
((2Q(αs − αw )− (B + C )e)

which collapse over time to a single value. Thus our system

becomes

η̇ = ε(T (η, η)− Tc),

ȧ =
1

R
Q(1− 1

2
(αs +

1

2
(αw + αi (η))))− A− (B + C )a + CT ,

ż =
1

R
(Q(αi (η)− αw )− (B + C )z),
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Fast-Slow Approximation

McGehee-Widiasih estimates ε ≈ 3.9× 10−13.

Thus η is a slow variable while the others are fast variables.

We will use the fast and slow subsystems to understand the

solution.

Reference: Christopher Jones, Geometric Singular Perturbation

Theory.
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Fast-Slow Hypotheses

We wish to use the theory of Fast-Slow Systems to solve for the

invariant manifold.

Notice we can write our system as

ẋ = f (x , y , ε)

ẏ = εg(x , y , ε)

where x are the fast variables and y are the slow variables.

Notice that f , g ∈ C∞ since they are polynomials of the

variables.

Let M0 be any compact subset of {(x , y) ; f (x , y , ε) = 0}.
Thus M0 is a subset of {(x , y) : x = h0(y)} where h0(y) is
de�ned for y ∈ K , a compact domain of R.
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Fast-Slow Overview

Given that the previous hypotheses are satis�ed, Fenichel's

Theorems assert that:

There exists a manifold Mε that lies within O(ε) from M0 and

is di�eomorphic to M0. Moreover it is locally invariant under

the �ow de�ned by our system.

We can write Mε = {(x , y) : x = hε(y)} and thus we can

write

ẏ = εg(hε(y), y , ε) = g(h0(y), y , 0) +O(ε)
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Fast Subsystem

The Fast Subsystem is described by the system:

η̇ = 0

ȧ =
1

R
Q(1− 1

2
(αs +

1

2
(αw + αi (η))))− A− (B + C )a + CT ,

ż =
1

R
(Q(αi (η)− αw )− (B + C )z).

From this we can solve for the manifold M0.

Since this implies η = constant, we can easily solve for a and z

on the manifold.
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Slow Subsystem

Using the values from the manifold for a and z , we can solve

g(h0(η), η, 0) = a +
1

4
(e − z) +

1

2
(u2 + d − s2z)p2(η)− Tc .

We can approximate the �ow on the manifold Mε by noting

η̇ = εg(hε(η), η, ε),

= g(h0(η), η, 0) +O(ε),

= a +
1

4
(e − z) +

1

2
(u2 + d − s2z)p2(η)− Tc +O(ε).
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h(η)
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Conclusion

The scienti�c record is ambiguous between a Snowball Earth

state and a Jormungand state.

Taking into account the e�ect of the Hadley cells on equatorial

ice-sheets we see the Budyko-Widiasih model gives a

Jormungand state solution.

We can receive an approximation to the solution using

fast-slow theorems.
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Further Analysis

Avenues of further analysis include:

An investigation of the models against the climate record.

McGehee and Lehman analyzed the Budyko-Widiasih model
against the climate record
Can do a comparative time series analysis
Speci�cally look at the regime switching or bifurcation.

More investigations with GCMs.
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