Ranking 00000

Water Quality Monitoring of Maryland's Tidal Waterways

Rosemary K. Le^a, **Christopher V. Rackauckas**^b, Annie S. Ross^c, Nehemias Ulloa^d, Graduate Assistant: Sai K. Popuri^e Faculty Mentor: Dr. Nagaraj Neerchal^e Client: Dr. Brian Smith, Maryland Department of Natural Resources

REU Site: Interdisciplinary Program in High Performance Computing University of Maryland, Baltimore County, www.umbc.edu/hpcreu

Acknowledgments: NSF, NSA, HPCF, CIRC, UMBC, DNR

^aBrown University ^bOberlin College ^cColorado State University ^dCalifornia State University, Bakersfield ^eUniversity of Maryland, Baltimore County

Courtesy of Maryland Department of Natural Resources

The Chesapeake Bay

- Largest estuary in the United States
- Stretches from Havre de Grace, Maryland to Virginia Beach, Virginia
- Houses more than 3,600 species of plants and animals
- Commercial and recreational resource
- Connected to many tributaries, spanning 5 states

 Background
 Wilcoxon & Simulation
 Ranking
 Conclusions

 0000
 00000
 00000
 0
 0

- Recognizes that the health of the society and the economy are dependent on the health of the environment
- Strives to preserve, protect, restore, and enhance the environment for this and future generations

We want to assist the DNR in analyzing and assessing the water quality of Maryland's tidal waterways

Monitoring	Stations and Darama	tore	
0000	00000	00000	0
Background	Wilcoxon & Simulation	Ranking	Conclusions

Monitoring Stations and Parameters

- Various types of stations, spanning several decades
- 38 continuous monitoring station data from 2011
- Readings taken every 15 minutes (majority of stations)

Important Parameters:

- Dissolved Oxygen
- Turbidity (water clarity)
- Chlorophyll (algae growth)
- **pH** (water acidity)

Background	Wilcoxon & Simulation	Ranking	Conclusions
000●		00000	0
What Constitut	es "Failure"?		

Courtesy of www.eyesonthebay.net

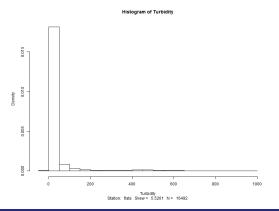
Parameter	Failure Threshold	Time Frame
D. Oxygen (severe)	< 3 mg/L	June to September
Dissolved Oxygen	< 5 mg/L	June to September
Turbidity	> 7 NTU	April to September
Chlorophyll	$> 30 \mu { m g/L}$	April to September
рН	< 5.5 or > 8.5	April to September

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		00000	O
Station Status			

Wilcoxon Signed-Rank Test

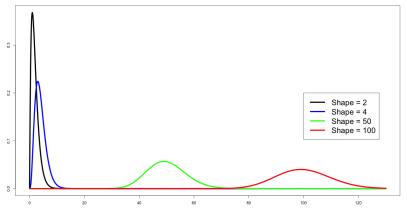
- Nonparametric test that compares the station's median to the failure threshold
- In terms of a particular parameter, is the station "Good," "Bad," or "Borderline?"
- Assumes the distribution is symmetric
- In the statistic below, R_i denotes the rank of $|x_i thresh|$

Test Statistic:
$$S = \left| \sum_{i=1}^{m} [R_i \cdot \text{sign}(x_i - thresh)] \right|$$


Background	Wilcoxon & Simulation	Ranking	Conclusions
0000	○●○○○	00000	O
Wilcoxon	Results		

Wilcoxon Assessment Table (a subset)

Station Name	D05	D03	Turbidity	Chlorophyll
AnnapolisCIBS	Good	Good	Good	Bad
Betterton	Good	Good	Good	Good
Big Annemessex	Good	Good	Good	Good
Bishopville	Bad	Good	Good	Bad
Budds Landing	Good	Good	Good	Bad
Chesapeake Y. Club	Good	Good	Good	Bad
Corisca River	Good	Good	Good	Bad
Downs Park	Good	Good	Good	Bad
Flats	Good	Good	Good	Good
:		÷	:	÷


Background	Wilcoxon & Simulation	Ranking	Conclusions
0000	00●00	00000	0
Simulation			

- The Wilcoxon Test assumes the distribution is symmetric, but not all parameters are distributed as such
- Assesses the validity of the Wilcoxon's Test and the effect of violating assumption of symmetry

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		00000	O
Gamma Distrib	utions		

Gamma distributions with rate = 1 and various shape values

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000	0000●	00000	O
Simulation	Results		

Wilcoxon Type I Error

Wilcoxon test applied to samples drawn from the gamma distribution **before and after log-transformation**

		Bet	fore	Af	ter
shape	rate	1	10	1	10
2		0.8737	0.8692	0.2183	0.2207
4		0.5054	0.5042	0.1003	0.0977
10		0.1716	0.1701	0.0407	0.0335
50		0.0304	0.0145	0.0131	0.0297
100		0.0204	0.0128	0.0116	0.0205

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		●0000	O
Ranking of S	Stations		

Ranking of Stations

- In order to rank stations, one must perform a comparison between each pair of stations to see whether the stations are significantly different
- This results in $\binom{n}{2}$ tests where *n* is the number of stations
- In order to control for Type I Error over the whole study, multiple comparison tests must be used

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		0●000	O
Tukey Test			

Tukey Test

- Tukey's Test is a commonly used multiple comparison test
- It performs multiple ANOVA's using a test statistic q in the Studentized Range Distribution
- Being based on ANOVA tests, it is designed to test means
- One can use proportions to make a Tukey-like test of proportions by using a variance transformation

$$p' = \frac{1}{2} \left[\arcsin \sqrt{\frac{X}{n+1}} + \arcsin \sqrt{\frac{X+1}{n+1}} \right], \ SE = \sqrt{\frac{410.35}{n_A + 0.5} + \frac{410.35}{n_B + 0.5}}$$

Test Statistic: $q = \frac{p'_A - p'_B}{SE}$

where X is the number of readings above the threshold and n is the number of observations in the sample (station).

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		00●00	O
Bonferroni			

Bonferroni's Adjustment

- Bonferroni's method is to adjust α for all $\binom{n}{2}$ tests
- The probability that there is a false-positive in events A or B is p(A) + p(B)
- Thus since there are $\binom{n}{2}$ tests, by dividing α by $\binom{n}{2}$ we get that the total probability of a Type 1 Error is α
- Therefore the adjustment is simply to let $\alpha = \frac{\alpha_0}{\binom{n}{2}}$ where α_0 is the chosen α

Background	Wilcoxon & Simulation	Ranking	Conclusions	
0000		000€0	O	
Benjamini-Hochberg				

The Benjamini-Hochberg Method

- While the Bonferroni method uses the traditional Type I Error definition, the Benjamini-Hochberg method uses what's known as the Familywise Type I Error
- Familywise Type I Error: The probabily of "false discoveries"
- $\bullet \ \alpha$ is the fraction of tests with false-positive rejections
- The method is as follows:
- Sort the p-values $p_{(1)} \dots p_{(m)}$ where m is the number of tests
- **2** Finding the largest k such that $p_{(k)} \leq \frac{k}{m} \alpha$
- 3 Reject $p_{(1)} \dots p_{(k)}$.

Background	Wilcoxon & Simulation	Ranking	Conclusions
		00000	

Oxygen (5mg/L) — Ranking of continuous monitoring stations with respect to its Percent Failure (% Fail), the Tukey Test (TT), the Bonferroni Test (Bonf), Benjamini-Hochberg Method (BH), and the Bayesian Ranking Method (BRM).

Station Name	% Fail	ΤТ	Bonf	BH	
				% Fail	Mean
Betterton	0	1	1	1	4
Havre de Grace	0	1	1	1	5
Flats	0.0001	1	1	3	2
:	÷	÷	÷	÷	÷
Little Monie	0.8021	36	36	36	37
Masonville (bottom)	0.8040	36	36	36	36
Goose (bottom)	0.8981	38	38	38	38

Background	Wilcoxon & Simulation	Ranking	Conclusions
0000		00000	•
Conclusions			

Conclusions

- Wilcoxon— The Bay and its tributaries appear to be in good condition for all parameters except chlorophyll
- **Simulation** Log-transformation of the data substantially reduces Type I error, however the error is still large
- **Ranking**—The Bonferonni Adjustment appears to be the most conservative grouping method while the Benjamini-Hochberg Method appears to be the least

References

- For complete details of all our projects, please see the Project Technical Report: HPCF-2012-12 www.umbc.edu/hpcf > Publications.
- For more information about the parameters and stations, please visit: www.eyesonthebay.net